K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 2 2017

9-n chia hết cho n-3

=> 6-n-3 chia hết cho n-3

=> 6 chia hết cho n-3

=> n-3 thuộc 1;-1;2;-2;3;-3;6;-6

=> n thuộc 4;2;5;1;6;0;9;-3

9 tháng 3 2020

a)  \(n+7⋮n+2\)

=) \(\left[n+7-\left(n+2\right)\right]⋮n+2\)

=) \(n+7-n-2⋮n+2\)

=) \(5⋮n+2\)

=) \(n+2\inƯ\left(5\right)\)\(\left\{+-1;+-5\right\}\)

=) \(n\in\left\{-3;-1;3;-7\right\}\)

đăng kí kênh V-I-S hộ mình nha !

làm hộ?????

10 tháng 3 2020

3)

3n+7\(⋮2n+1\)

vì \(3n+7⋮3n+7\)

=>\(2\left(3n+7\right)⋮3n+7\)

=> 6n+7\(⋮3n+7\)

vì \(2n+1⋮2n+1\)

\(\Rightarrow3\left(2n+1\right)⋮2n+1\)

\(\Rightarrow6n+1⋮2n+1\)

\(\Rightarrow\left(6n+7\right)-\left(6n+1\right)⋮2n+1\)

\(\Rightarrow6⋮2n+1\)

đến đoạn này em chỉ cần lập bảng tìm n nữa là xong nhé

ta có : n+7 chia hết n+2

=> (n+2)+5 chia hết cho n+2

=> 5 chia hết n+2

=> n+2 c Ư (5) = { 1;5 }

+) n+2 = 1 => n=-1

+) n+2=5 => n=3

vậy n = -1 và n = 3

Ta có:

\(n+7⋮n+2\)

\(\Leftrightarrow\left(n+2\right)+5⋮n+2\)

Vì \(n+2⋮n+2\)

Để \(\left(n+2\right)+5⋮n+2\)

Thì \(5⋮n+2\)

\(\Rightarrow n+2\inƯ\left(5\right)=\left\{1;5\right\}\)

\(\Rightarrow\orbr{\begin{cases}n+2=1\\n+2=5\end{cases}\Rightarrow\orbr{\begin{cases}n=-1\\n=3\end{cases}}}\)

Vậy....

5 tháng 2 2017

a) Ta có : n+7 \(⋮\)n+2

\(\Rightarrow\)n+2+5\(⋮\)n+2

mà n+2\(⋮\)n+2

\(\Rightarrow\)5\(⋮\)n+2

\(\Rightarrow n+2\in_{ }\){-5;-1;1;5}

\(\Rightarrow n\in\){-7;-3;-1;2}

b,c,d tương tự

5 tháng 2 2017

giải hết ra giùm mk mk gấp lắm

cảm ơn bạn

10 tháng 3 2020

không biết

mik ko bt câu 1, 2 chỉ bt câu 3 thôi:

c)

  • 3n+7 chia hết cho 2n+1

      => 2.(3n+7) chia hết cho 2n+1

      => 6n+14 chia hết cho 2n+1

  • 2n+1 chia hết cho 2n+1

      => 3.(2n +1) chia hết cho 2n+1

      => 6n+3 chia hết cho 2n+1

Do đó: 6n+14 - (6n+3) chia hết cho 2n+1

       => 6n+14 - 6n - 3 chia hết cho 2n+1

       => ( 6n - 6n ) - ( 14 - 3 ) chia hết cho 2n+1

       =>                11               chia hết cho 2n+1

=> 2n+1 thuộc Ư (11) = { 1,11 }

Ta có bảng sau:

2n+1

      1      11
n      0       5

Vậy n thuộc { 0, 5 }

a: \(n^3-2⋮n-2\)

=>\(n^3-8+6⋮n-2\)

=>\(6⋮n-2\)

=>\(n-2\in\left\{1;-1;2;-2;3;-3;6;-6\right\}\)

=>\(n\in\left\{3;1;4;0;5;-1;8;-4\right\}\)

b: \(n^3-3n^2-3n-1⋮n^2+n+1\)

=>\(n^3+n^2+n-4n^2-4n-4+3⋮n^2+n+1\)

=>\(3⋮n^2+n+1\)

=>\(n^2+n+1\in\left\{1;-1;3;-3\right\}\)

mà \(n^2+n+1=\left(n+\dfrac{1}{2}\right)^2+\dfrac{3}{4}>=\dfrac{3}{4}\forall n\)

nên \(n^2+n+1\in\left\{1;3\right\}\)

=>\(\left[{}\begin{matrix}n^2+n+1=1\\n^2+n+1=3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}n^2+n=0\\n^2+n-2=0\end{matrix}\right.\)

=>\(\left[{}\begin{matrix}n\left(n+1\right)=0\\\left(n+2\right)\left(n-1\right)=0\end{matrix}\right.\Leftrightarrow n\in\left\{0;-1;-2;1\right\}\)

11 tháng 2 2019

n+7 chia hết cho n+2

n+2 chia hết cho n+2

suy ra (n+7)-(n+2)chia  hết cho n+2

     n+7-n-2 chia hết cho n+2

  (n-n)+(7-2) chia  hết cho n+2

      5 chia  hết cho n+2 suy ra n+2 thuộc Ư(5)={-1;1;5}

     suy ra n+2 thuộc {-3;-1;3}

Vậy n+2 thuộc {-3;-1;3}

12 tháng 2 2019

\(2n+7⋮n+1\)

\(\Rightarrow2\left(n+1\right)+5⋮n+1\)

\(\Rightarrow5⋮n+1\)

\(\Rightarrow n+1\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\)

\(\Rightarrow n\in\left\{0;-2;4;-6\right\}\)

22 tháng 11 2019

a) Ta có:

17 chia hết cho n-3

=>n-3 thuộc Ư(17)

=>Ư(17)={-1;1;-17;17}

Ta có bảng sau:

n-3-11-1717
n24-1420
KLtmtmloạitm

Vậy....

22 tháng 11 2019

b) Ta có:

n+8 chia hết cho n+7

=>n+7+1 chia hết cho n+7

=>1 chia hết cho n+7

=>n+7 thuộc Ư(1)

=>Ư(1)={-1;1}

Xét:

+)n+7=-1=>n=-8(loại)

+)n+7=1=>n=-6(loại)

Vậy ko có gt nào của n thỏa mãn đk trên