cho tam giác ABC , \(\widehat{B}\)= \(2\widehat{C}\), AH \(⊥\)BC ( H \(\in\)BC ) . trên tia đối của tia BA lấy điểm E sao cho BE = BH . cmr : EH cắt AC tại trung điểm của AC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
cái này thầy mk dạy rùi thì phải nhưng quên cách
mk đag hok lớp 7 nek
CM: Ta có: BE = BH (gt) => t/giác BEH cân tại B => \(\widehat{E}=\widehat{H_1}\)
Do \(\widehat{ABH}\) là góc ngoài của t/giác BHE nên : \(\widehat{ABH}=\widehat{E}+\widehat{H_1}\) => \(\widehat{ABH}=2.\widehat{H_1}\)
Mà \(\widehat{ABH}=2.\widehat{C}\)
=> \(2.\widehat{H_1}=2.\widehat{C}\) => \(\widehat{H_1}=\widehat{C}\)
mà \(\widehat{H_1}=\widehat{H_2}\) (đối đỉnh)
=> \(\widehat{C}=\widehat{H_2}\) => t/giác HFC cân tại F => FH = FC (2)
Ta có: \(\widehat{H_2}+\widehat{H_3}=90^0\) (cùng phụ nhau)
\(\widehat{A_1}+\widehat{C}=90^0\) (t/giác AHC vuông tại H)
Mà \(\widehat{H_2}=\widehat{C}\) (cmt)
=> \(\widehat{A_1}=\widehat{H_3}\) => t/giác AFH cân tại F => AF = FH (2)
Từ (1) và (2) => FH = FA = FC
Bài 3:
a: Xét ΔAIB và ΔCID có
IA=IC
góc AIB=góc CID
IB=ID
Do đó: ΔAIB=ΔCID
b: Xét tứ giác ABCD có
I là trung điểm chung của AC và BD
nên ABCD là hình bình hành
Suy ra: AD//BC va AD=BC
Bài 6:
a: Xét ΔADB và ΔAEC có
AD=AE
góc A chung
AB=AC
Do đó: ΔADB=ΔAEC
SUy ra: BD=CE
b: Xét ΔEBC và ΔDCB có
EB=DC
BC chung
EC=BD
Do đó: ΔEBC=ΔDCB
Suy ra: góc OBC=góc OCB
=>ΔOBC cân tại O
=>OB=OC
=>OE=OD
=>ΔOED cân tại O
c: Xét ΔABC có AE/AB=AD/AC
nên ED//BC