K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 2 2017

p = 4a^2 + 4a = 4a. ( a +1)

Nếu a chẵn thì a chia hết cho2 => 4a chia hết cho 8 => p chia hết cho 8

Nếu a lẻ thì a +1 chia hết cho 2 => p chia hết cho 8

2 tháng 2 2017

tại sao là 4a.( a +1)?

2 tháng 2 2017

\(P=4a^2+4a\)

\(\Rightarrow P=4\left(a^2+a\right)⋮2\) (1)

\(\Rightarrow P=4\left(a^2+a\right)⋮4\) (2)

Từ (1) và (2) \(\Rightarrow P=4\left(a^2+a\right)⋮8\)

\(\Rightarrow P=4a^2+4a⋮8\left(đpcm\right)\)

3 tháng 1 2016

P = 4a2 +  4a = 4(a + a2)

Bây giờ chỉ còn CM a + a2 chia hết cho 2

a + a2 = a(a+  1) chia hết cho 2

=> ĐPCM 

20 tháng 1 2017

Với  \(a\in Z\) 

Ta có:\(P=4a^2+4a\)

 \(\Leftrightarrow P=4a\left(a+1\right)\)

Vì \(\hept{\begin{cases}4⋮4\\\left[a\left(a+1\right)\right]⋮2\end{cases}}\)

Nên: \(P⋮8\)

Vậy với\(a\in Z\) thì \(P=\left(4a^2+4a\right)⋮8\)  (đpcm)

7 tháng 8 2016

b, a+b chia hết cho 5 nên 4a+4b chia hết cho 5

Nên ta viết: 4a+4b+15b

thấy 15b chia hết cho 5 và 4a+4b chia hết cho 5

Nên 4a+19b chia hết cho 5

1 tháng 8 2018

ta có : \(4a-3b⋮19\Leftrightarrow20a-15b⋮19\Leftrightarrow4\left(5a+b\right)-19b⋮19\)

\(\Rightarrow5a+b⋮19\left(đpcm\right)\)

bài còn lại lm tương tự nha

1 tháng 8 2018

2. \(4a+3b⋮13\Leftrightarrow7\left(4a+3b\right)⋮13\Leftrightarrow28a+21b⋮13\Leftrightarrow28a+21b-13b⋮13\Leftrightarrow28a+8b⋮13\Leftrightarrow4\left(7a+2b\right)⋮13\Leftrightarrow7a+2b⋮13\)

Vậy \(4a+3b⋮13\Leftrightarrow7a+2b⋮13\)

2 tháng 8 2018

1/

4a-3b chaia hết cho 19 => 6(4a-3b)=24a-18b chia hết cho 19

24a-18b-(5a+b)=19a-19b=19(a-b) chia hết cho 19 mà 24a-18b chia hết cho 19 nên 5a+b chia hết cho 19

2/

4a+3b chia hết cho 13 => 5(4a+3b)=20a+15b chia hết cho 13

20a+15b-(7a+2b)=13a+13b=13(a+b) chia hết cho 13 mà 20a+15b chia hết cho 13 nến 7a+2b cũng chia hết cho 13

10 tháng 3 2019

TA CÓ \(\left(a-b\right)⋮7\)

\(\Rightarrow3\left(a-b\right)⋮7\)

\(\Rightarrow\left(3a-3b\right)⋮7\)

Mà nếu \(\left(4a+3b\right)⋮7\)

thì \(\left(4a+3b\right)+\left(3a-3b\right)⋮7\)

\(\Rightarrow\left(4a+3b+3a-3b\right)⋮7\)

\(\Rightarrow7a⋮7\left(đpcm\right)\)

Vậy nếu \(\left(a-b\right)⋮7\)thì \(\left(4a+3b\right)⋮7\)

10 tháng 3 2019

Cảm ơn bạn nhiều!

20 tháng 10 2019

Ta có:

2a2+4a+5

=2a.(a+2)+5

Vì 2a.(a+2) chia hết cho a+2

=>5 chia hết cho a+2

=>a+2 thuộc Ư(5)

=>tự lm