B1:
A = 1 + 4^2 + 4^3 +... + 4^12
B2
Chứng minh : Tổng 4 STN liên tiếp chia hết cho 2 mak ko chia hết cho 4
B3
A = 1 + 4 + 4^2 + 4^3 +... + 4 ^12
a, Chứng tỏ A chia hết cho 4,5,21
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b) cho 1 số tự nhiên a bất kì thì 4 số TN liên tiếp là a -> a+ 1 ; a + 2 ; a + 3
tổng = a + a + 1 + a + 2 + a + 3 = 4a + 6 = 4(a + 1) + 2 chia 4 dư 2
hoặc cho 1 số tự nhiên a - 1 bất kì thì 4 số TN liên tiếp là a - 1 -> a ; a + 1 ; a + 2
tổng = a - 1 + a + a + 1 + a + 2 = 4a + 2 chia 4 dư 2
=> dù cho chọn 4 số TN Liên tiếp thì tổng của chúng khi chia 4 luôn dư 2
bài này trong sbt 6 giữa giai xem mà mấy bài này gọi a là ra dễ lắm
a/ Gọi 3 số nguyên liên tiếp là a; a+1; a+2.
Theo GT ta có : \(a+\left(a+1\right)+\left(a+2\right)=3a+3\)
=3(a+1) \(⋮3\)(vì \(3⋮3\))
Vậy tổng ba số nguyên liên tiếp là số chia hết cho 3.
b/ Gọi 4 số cần tìm là a ; a+1; a+2 ; a+3
Theo Gt ta có :a+(a+1)+(a+2)+(a+3) = 4a+6
=2(2a+3)\(⋮̸4\)( vì số chia hết cho 2 chưa chắc chia hết cho 4)
Vậy tổng của 4 số nguyên liên tiếp không chia hết cho 4.
a) 3 số liên tiếp là: n, n+1, n+2. ( n thuộc N )
Ta có: n + (n+1) + (n+2)= 3n+3 = 3(n+1) chia hết cho 3
b) 4 số liên tiếp: n, n+1, n+2, n+3 (n thuộc N )
Ta có: n+(n+1)+(n+2)+(n+3)= 4n+6 ko chia hết cho 4 vì: 4n chia hết cho 4 nhưng 6 ko chia hết cho 4.
câu 1: Ta co 3 số tư nhiên liên tiếp là a; a+1 ; a+2
tổng 3 số tự nhiên liên tiếp là a+ (a+1) + (a+2)= 3a+3 =3(a+1) chia hết cho 3
Câu 2: không đúng
vì 4 số tự nhiên là a; (a+1) ; ( a+2); (a+3) thì tổng 4 số tự nhiên liên tiếp là: a+ (a+1) + ( a+2)+ (a+3)= 4a+6= 2(2a+3)
vì số (2a+3) là số lẻ không chia hết cho 2 nên số 2(2a+3) không chia hết cho 4
Câu 3:
a) Ta có S= 1+3+32+33+........348+349= (1+3)+32(1+3)+......348(1+3)=(1+3)(1+32+.....348)=4(1+32+.....348) chia hết cho 4
b) Từ câu a ta có S= 4(1+32+33+....348) làm tương tự câu a ta có S= 4.4(1+3+32+...347) =..............= 4.4.4.......(1+3)= 449
Số 4 có mũ là lẻ thì tận cùng là số 4 có số mũ chẵn tận cùng là số 6
Vậy S có tần cùng là số 4
Câu 1 :
a) S1 = 1+2+3+...+999
Số số hạng trong S1 là 999
S1 = (1+999)x999:2=499500
S1 =499500
b) Số số hạng trong S2 là (2010-10):2+1=1001
S2= (10+2010)x1001:2=1011010
S2=1011010
c) Số số hạng trong S3 là (1001-21):2+1=491
S3=(21+1001)x491:2=250901
S3=250901
d)Số số hạng trong S5 là (79-1);3+1=27
S5=(1+79)x27:2=1080
S5=1080
e) Số số hạng trong S6 là (155-15):2+1=71
S6=(15+155)x71:2=6035
f) Số số hạng trong S7 là (115-15):10+1=11
S7= (15+115)x11:2=715
g) Số số hạng trong S4 là (126-24):1+1=103
S4= (24+126)x103:2=7725
Câu 2:
Ta có : a + 12 chia hết cho 36
a+12 chia hết cho 4,9
+) a+12 chia hết cho 4
Mà 12 chia hết cho 4
Suy ra: a chia hết cho 4 (nếu a ko chia hết cho 4 thì a+12 sẽ ko chia hết cho 4)
+) a+ 12 chia hết cho 9
Mà 12 ko chia hết cho 9
Suy ra a ko chia hết cho 9 ( nếu a chia hết cho 9 thì a+12 ko chia hết cho 9)
Vậy a chia hết cho 4; ko chia hết cho 9
Câu 3 :
a) Từ 1 đến 1000 có số số hạng chia hết cho 5 là:
(1000-5):5+1= 200(số)
ĐS: 200 số
b) +)1015+8 chia hết cho 2 vì 1015chia hết cho 2 và 8 chia hết cho 2
+)1015+8=10..0(15 chữ số 0)+8=10...08(14 chữ số 0)
Tổng các chữ số của số 10...08(14 chữ số 0) là 9 nên 1015+8 chia hết cho 9
c) +) 102010+8=10..0(2010 chữ số 0)+8=10...08(2009 chữ số 0)
Tổng các chữ số của số 10...08(2009 chữ số 0) là 9 nên 102010+8 chia hết cho 9
+) 102010+14=10..0(2010 chữ số 0)+14=10...014(2008 chữ số 0)
Tổng các chữ số của số 10...014(2008 chữ số 0) là 6 nên 102010+14 chia hết cho 3
+)102010+14 chia hết cho 2 vì 102010 là số chẵn và 14 là số chẵn
+)102010 -4=10..0(2010 chữ số 0)-4=99..96(2008 chữ số 9)
Tổng các chữ số của số 99...96(2008 chữ số 9) là : 2008x9+6=18078 chia hết cho 3
Nên 102010 -4 chia hết cho 3
Câu 4 :
mik bít làm nhưng buồn ngủ lắm, mai
a, gọi 3stn có dạng là : k+1;k+2;k+3
ta có tổng của k+1;k+2;k+3= k+1+k+2+k+3=3k+6 chia hết cho 3 => đpcm
b, gọi 4 stn liên tiếp là; k+1;k+2;k+3;k+4
ta có tổng của k+1;k+2;k+3;k+4= k+1+k+2+k+3+k+4= 4k+ 10 ko chia hết cho 4=> đpcm
1. gọi 3 stn liên tiếp là n,n+1,n+2
ta có n+n+1+n+2 = 3n +3 = 3(n+1) : hết cho 3
2. gọi 4 stn liên tiếp là n,n+1,n+2,n+3
ta có n+n+1+n+2+n+3 = 4n+6
vì 4n ; hết cho 4 mà 6 : hết cho 4
=> 4n+6 ko : hết cho 4
3. gọi 2 stn liên tiếp đó là a,b
ta có a=5q + r
b=5q1 +r
a-b = ( 5q +r) - (5q1+r)
= 5q - 5q1
= 5(q-q1) : hết cho 5
a)
gọi 3 STN liên tiếp là a ;a+1;a+2
=>a+a+1+a+2=a+a+a+1+2=3a+3=3(a+1) chia hết cho 3
=> .. có
b)
gọi 4 STN liên tiếp là a;a+1;a+2;a+3
=>a+a+1+a+2+a+3=a+a+a+a+6=4a+6
=> ko chia hết cho 4
~~~Ủa bn j đó ơi, mk đăng nhiều đâu liên quan gì đến bạn đâu nhỉ, bạn giúp mình thì mình xin cảm ơn nhưng mong bn lần sau đừng nói vậy~~~
achia het cho 2,b chic het cho 2 thi(a+b)chia het cho 2
giúp em ạ mai thi rồi mak mấy bài nà e ko bt ;-;