cho hình bình hành ABCD. một đt d đi qua A cắt đường chéo BD tại P, cắt các đt BC và CD lần lượt tại M,N. Chứng minh BM.DN không đổi
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét ΔADNΔADN và ΔMBAΔMBA có:
ˆDAN=ˆBMADAN^=BMA^ (AB//DC nên hai góc ở vị trí so le trong bằng nhau)
ˆAND=ˆMABAND^=MAB^ (hai góc ở vị trí so le trong)
⇒ΔADN∼ΔMBA⇒ΔADN∼ΔMBA (g.g)
⇒DNBA=DABM⇒DNBA=DABM (hai cạnh tương ứng)
⇒BM.DN=BA.DA⇒BM.DN=BA.DA mà BA,DABA,DA là hai cạnh của hình bình hành, hình bình hành cố định nên BM.DNBM.DN cố định (đpcm)
mình nghĩ dc câu a thôi
Mk ms nghĩ được phần a thôi, phần b để tí nghĩ tiếp :v
(Hình tự vẽ)
Vì ABCD là hình bình hành (gt)
\(\Rightarrow\) AD//BC (t/c hbh)
Mà M \(\in\) BC (d cắt BC tại M)
\(\Rightarrow\) AD//MB
\(\Rightarrow\) \(\widehat{DAN}=\widehat{AMB}\) (2 góc slt, N \(\in\) AM)
Vì ABCD là hbh (gt)
\(\Rightarrow\) \(\widehat{B}=\widehat{D}\) (t/c hbh)
Xét tam giác ADN và tam giác MBA có:
\(\widehat{D}=\widehat{B}\) (cmt)
\(\widehat{DAN}=\widehat{BMA}\) (cmt)
\(\Rightarrow\) \(\Delta\)ADN \(\sim\) \(\Delta\)MBA (gg)
\(\Rightarrow\) \(\dfrac{AD}{BM}=\dfrac{DN}{AB}\) (tỉ số đồng dạng)
\(\Rightarrow\) BM.DN = AB.AD
Mà AB, AD là các cạnh của hbh (gt)
\(\Rightarrow\) AB, AD không đổi
\(\Rightarrow\) AB.AD không đổi
\(\Rightarrow\) MB.DN không đổi (đpcm)
Chúc bn học tốt!
ABCD là hbh
=>AC cắt BD tại trung điểm của mỗi đường
=>O là trung điểm chung của AC và BD
Xét ΔOAM và ΔOCP có
góc OAM=góc OCP
OA=OC
góc AOM=góc COP
=>ΔOAM=ΔOCP
=>OM=OP
=>O là trung điểm của MP
Xét ΔOQD và ΔONB có
góc ODQ=góc OBN
OD=OB
góc QOD=góc NOB
=>ΔOQD=ΔONB
=>OQ=ON
=>O là trung điểm của QN
Xét tứ giác MNPQ có
O là trung điểm chung của MP và NQ
=>MNPQ là hbh
Tham khảo bài này nha!
Hình thang ABCD (AB//CD) có AC va BD cắt nhau tại O , AD và BC cắt nhau tại K . Chứng minh rằng OK đi qua trun?
Tứ giác ABCD là hình thang nên:AB//CD.
Gọi M, N lần lượt là giao điểm của KO với AB,CD.
Áp dụng định lý talet ta có:
AM/DN=MB/NC(=KM/KN)
=(AM+MB)/(CN+ND) (t/c dãy tỉ số bằng nhau) =AB/DC.
=AO/OC=AM/NC.
Vậy AM/DN=AM/NC hay DN=NC.
tương tự MB=MA.
hay ta có OK đi qua trung điểm của AB và CD.
: Tứ giác ABCD là hình thang nên:AB//CD.
Gọi M, N lần lượt là giao điểm của KO với AB,CD.
Áp dụng định lý talet ta có:
AM/DN=MB/NC(=KM/KN)
=(AM+MB)/(CN+ND) (t/c dãy tỉ số bằng nhau) =AB/DC.
=AO/OC=AM/NC.
Vậy AM/DN=AM/NC hay DN=NC.
tương tự MB=MA.
ta có OK đi qua trung điểm của AB và CD.