a) 23- 53: 52 + 12.22
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) 12.18 + 14.3 – 255:17
= 216 + 42 – 15
= 273
b) 13 + 42.5 – (198:11 – 8)
= 13 + 210 – 10
= 213
c) 25.8 – 12.5 + 272:17 – 8
= 200 – 60 +16 – 8
= 148
d, 2 3 - 5 3 : 5 2 + 12 . 2 2
= 8 – 5 +48
= 51
a) 5.22 + (x + 3) = 52
5.4 + (x + 3) = 25
20 + (x + 3) = 25
x + 3 = 25 – 20
x + 3 = 5
x = 5 – 3 = 2
b) 23 + (x – 32) = 53 - 43
8 + (x – 9) = 125 – 64
8 + (x – 9) = 61
x – 9 = 61 – 8
x – 9 = 53
x = 53 + 9 = 62
a) \(5.2^2+\left(x+3\right)=5^2\)
\(x+3=5^2-5.2^2\)
\(x+3=25-20\)
\(x+3=5\)
\(x=2\)
b) \(2^3+\left(x-3^2\right)=5^3-4^3\)
\(8+\left(x-9\right)=125-64\)
\(x-9=53\)
\(x=62\)
a) 11070 : {15 . [ 356 – ( 2110 – 2000 )]}
= 11070 : [15(356 – 110)] = 11070 : 3690 = 3
b) 62500 : { 50 2 : [ 112 – ( 52 – 2 3 . 5 )]}
= 62500 : { 2500 : [ 112 – ( 52 – 40 )]}
= 62500 : { 2500 : [ 112 – 12 ]}
= 62500 : { 2500 : 100 }
= 62500 : 25
= 2500
c) 3 3 . 5 3 – 20 . { 300 – [ 540 – 2 3 ( 7 8 : 7 6 + 7 0 )]}
= 3 3 . 5 3 – 20 . {300 – [ 540 – 2 3 (72 + 1 )]
= 3 3 . 5 3 – 20 . [ 300 – (540 - 8 . 50)
= 27 . 125 – 20 . [300 – ( 540 - 400 )]
= 3375 – 20 . ( 300 – 140 )
= 3375 – 20 . 160
= 3375 – 3200
= 175
a: \(2^3-5^3:5^2+12\cdot2^2\)
\(=8-5+48\)
\(=51\)
b: \(5\cdot\left[\left(85-35:7\right):8+90\right]-5\)
\(=5\cdot\left[10+90\right]-5\)
=495
\(A=2+2^2+...+2^{20}\)
\(2A=2^2+2^3+...+2^{21}\)
\(2A-A=2^2+2^3+...+2^{21}-2-2^2-...-2^{20}\)
\(A=2^{21}-2\)
___________
\(B=5+5^2+...+5^{50}\)
\(5B=5^2+5^3+...+5^{51}\)
\(5B-B=5^2+5^3+...+5^{51}-5-5^2-...-5^{50}\)
\(4B=5^{51}-5\)
\(B=\dfrac{5^{51}-5}{4}\)
___________
\(C=1+3+3^2+...+3^{100}\)
\(3C=3+3^2+...+3^{101}\)
\(3C-C=3+3^2+...+3^{101}-1-3-3^2-...-3^{100}\)
\(2C=3^{101}-1\)
\(C=\dfrac{3^{101}-1}{2}\)
a) \(S=1+2+2^2+..+2^{2022}\)
\(2S=2+2^2+2^3+...+2^{2023}\)
\(2S-S=2+2^2+2^3+...+2^{2023}-1-2-2^2-...-2^{2022}\)
\(S=2^{2023}-1\)
b) \(S=3+3^2+3^3+...+3^{2022}\)
\(3S=3^2+3^3+...+3^{2023}\)
\(3S-S=3^2+3^3+....+3^{2023}-3-3^2-...-3^{2022}\)
\(2S=3^{2023}-3\)
\(\Rightarrow S=\dfrac{3^{2023}-3}{2}\)
c) \(S=4+4^2+4^3+...+4^{2022}\)
\(4S=4^2+4^3+...+4^{2023}\)
\(4S-S=4^2+4^3+...+4^{2023}-4-4^2-...-4^{2022}\)
\(3S=4^{2023}-4\)
\(S=\dfrac{4^{2023}-4}{3}\)
d) \(S=5+5^2+...+5^{2022}\)
\(5S=5^2+5^3+...+5^{2023}\)
\(5S-S=5^2+5^3+...+5^{2023}-5-5^2-...-5^{2022}\)
\(4S=5^{2023}-5\)
\(S=\dfrac{5^{2023}-5}{4}\)
`2^{3}-5^{3}:5^{2}+12.2^{2}`
`=8-5+48`
`=3+48=51`