K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 1 2017

Nếu giải hết 4 bài này :

1. Gãy tay

2. Đau đầu

3. Zo bệnh viện tâm thần

NĂm mới chúc bạn:

1 năm mới hạnh phúc

12 tháng sung túc

48 tuần phấn khởi

365 ngày vui tươi

8760 giờ đầy hy vọng

525600 phút may mắn

31536000 giây thành công

8. Chúc các bạn có nhiều người để ý. Tỏ tình nhiều ý. Tiền nhiều nặng ký. Công việc vừa ý. Miệng cười mắt ti hí. Sống Lâu Một tí.

9. Tết tới tấn tài – Xuân sang đắc lộc – Gia đình hạnh phúc – Vạn sự cát tường.

10. Chúc các bạn có 1 cái tết vui vẻ, hạnh phúc, vạn sự như ý, “Tiền vào như nước sông Đà. Tiền ra nhỏ giọt như cà phê phin”.

11. Chúc ông bà 1 tô như ý. Chúc cô chú 1 chén an khang. Chúc gia đình anh chị 1 dĩa, 1 dĩa… tài lộc! Công thành danh toại chúc VINH QUANG.

12. Năm con Gà, chúc bạn vui vẻ như Chim Sẻ, khỏe mạnh như Đại Bàng, giàu sang như chim Phụng, làm lụng như chim Sâu, sống lâu như Đà Điểu.

29 tháng 1 2017

hinh tu ve nha

a)CO TAM GIAC ABC CAN TAI A(gt)

=> AB=AC( DN TAM GIAC CAN)   (1)

CO BE=CD(GT)                            (2)

TU (1) VA (2) =>AE=AD

=> TAM GIAC AED CAN TAI A( DN TAM GIAC CAN)

a: Xét ΔADB và ΔAEC có

góc A chung

AB=AC
góc ABD=góc ACE

=>ΔADB=ΔAEC

=>AD=AE

b: Xét ΔABC có AE/AB=AD/AC

nên ED//BC

ED//BC

=>góc EDB=góc DBC

=>góc EDB=góc EBD

=>ED=EB

Xét tứ giác BEDC có

DE//BC

BD=CE

=>BEDC là hình thang cân

=>EB=DC=ED

c: Xét ΔOBC có góc OBC=góc OCB

nên ΔOBC cân tại O

=>OB=OC

OB+OD=BD

OC+OE=CE
mà OB=OC và BD=CE

nên OD=OE

=>ΔODE cân tạiO

Bổ sung đề: D và E lần lượt là trung điểm của AB và AC

a) Ta có: \(AD=DB=\dfrac{AB}{2}\)(D là trung điểm của AB)

\(AE=EC=\dfrac{AC}{2}\)(E là trung điểm của AC)

mà AB=AC(ΔABC cân tại A)

nên AD=DB=AE=EC

Xét ΔABE và ΔACD có 

AB=AC(ΔABC cân tại A)

\(\widehat{BAE}\) chung

AE=AD(cmt)

Do đó: ΔABE=ΔACD(c-g-c)

b) Ta có: ΔABE=ΔACD(cmt)

nên BE=CD(hai cạnh tương ứng)

c) Xét ΔDBC và ΔECB có

DB=EC(cmt)

\(\widehat{DBC}=\widehat{ECB}\)(hai góc ở đáy của ΔABC cân tại A)

BC chung

Do đó: ΔDBC=ΔECB(c-g-c)

Suy ra: \(\widehat{DCB}=\widehat{EBC}\)(hai góc tương ứng)

hay \(\widehat{KBC}=\widehat{KCB}\)

Xét ΔKBC có \(\widehat{KBC}=\widehat{KCB}\)(cmt)

nên ΔKBC cân tại K(Định lí đảo của tam giác cân)

d) Xét ΔABK và ΔACK có 

AB=AC(ΔABC cân tại A)AK chung

BK=CK(ΔKBC cân tại K)Do đó: ΔABK=ΔACK(c-c-c)

Suy ra: \(\widehat{BAK}=\widehat{CAK}\)(hai góc tương ứng)

mà tia AK nằm giữa hai tia AB,AC

nên AK là tia phân giác của \(\widehat{BAC}\)(đpcm)

a) Ta có: \(AD=\dfrac{AB}{2}\)(D là trung điểm của AB)

\(AE=\dfrac{AC}{2}\)(E là trung điểm của AC)

mà AB=AC(ΔABC cân tại A)

nên AD=AE

Xét ΔABE và ΔACD có

AB=AC(ΔABC cân tại A)

\(\widehat{BAE}\) chung

AE=AD(cmt)

Do đó: ΔABE=ΔACD(c-g-c)

4 tháng 3 2021

Bài này dễ đợi mình !

a: Xét ΔADC và ΔAEB có

AD=AE

góc A chung

AC=AB

=>ΔADC=ΔAEB

b: Gọi giao của 3 đường trung trực trong ΔABC là O

=>OB=OC

Kẻ OK vuông góc BC, OK cắt DE tại M

=>OK là trung trực của BC

Xét ΔABC có AD/AB=AE/AC

nên DE//BC

=>OM vuông góc DE tạiM

Xét ΔOBD và ΔOCE có

OB=OC

góc OBD=góc OCE

BD=CE

=>ΔOBD=ΔOCE

=>OE=OD

=>OM là trung trực của DE

17 tháng 7 2016

Bài 1 :
B A C H K E D M N

a) Ta có : \(\hept{\begin{cases}AM=MB\\AN=NC\end{cases}\Rightarrow}\)MN là đường trung bình tam giác ABC \(\Rightarrow MN\text{//}BC\) hay \(MN\text{//}HK\left(1\right)\)

Dễ thấy MNKB là hình bình hành => \(\widehat{MNK}=\widehat{ABC}=\widehat{MHB}\)(Vì tam giác AHB vuông có HM là đường trung tuyến ứng với cạnh huyền.) . Mặt khác : \(\widehat{MNK}=\widehat{CKN}\)(hai góc ở vị trí so le trong)

=> \(\widehat{MHB}=\widehat{CKN}\). Mà hai góc này lần lượt bù với \(\widehat{MHK}\)và \(\widehat{HKN}\)=> \(\widehat{MHK}=\widehat{HKN}\) (2)

Từ (1) và (2) suy ra MNKH là hình thang cân.

b) Dễ thấy HK là đường trung bình tam giác AED => HK // ED hay BC // ED (3) 

Tương tự , MH và NK lần lượt là các đường trung bình của các tam giác ABE và ACD

=> BE = 2MH ; CD = 2NK mà MH = NK (MNKH là hình thang cân - câu a)

=> BE = CD (4)

Từ  (3) và (4) suy ra BCDE là hình thang cân.

17 tháng 7 2016

A B C D E N M P

Bài 2 :

a) Ta có : \(\widehat{BAD}=\widehat{CAE}=90^o\Rightarrow\widehat{BAD}+\widehat{DAE}=\widehat{CAE}+\widehat{DAE}\Rightarrow\widehat{BAE}=\widehat{CAD}\)

Xét tam giác BAE và tam giác CAD có : \(AB=AD\left(gt\right)\)\(AC=AE\left(gt\right)\) ; \(\widehat{BAE}=\widehat{CAD}\left(cmt\right)\)

\(\Rightarrow\Delta BAE=\Delta CAD\left(c.g.c\right)\Rightarrow CD=BE\)

b) Dễ dàng chứng minh được MP và PN lần lượt là các đường trung bình của các tam giác ACD và tam giác BEC 

=> MP = 1/2CD ; PN = 1/2 BE mà CD = BE => MP = PN => tam giác MNP cân tại P

Để chứng minh góc MPN = 90 độ , hãy chứng minh BE vuông góc với CD.

15 tháng 4 2019

a, vì AB=AC(gt)  mà D là trung điểm của AB,E là trung điểm AC 

=>AD=AE

=>t.giác ADE cân tại A

b,đề sai hay sao ấy

16 tháng 4 2019

câu b sửa thành BD=CE akira nhé mình viết sai

Bài 1: 

a: Ta có: \(AD=DB=\dfrac{AB}{2}\)

\(AE=EC=\dfrac{AC}{2}\)

mà AB=AC

nên AD=DB=AE=EC

Xét ΔADC và ΔAEB có

AD=AE

\(\widehat{DAC}\) chung

AC=AB

Do đó: ΔADC=ΔAEB

b: Ta có; ΔAEB=ΔADC

=>BE=CD

c: Xét ΔDBC và ΔECB có

DB=EC

\(\widehat{DBC}=\widehat{ECB}\)

BC chung

Do đó: ΔDBC=ΔECB

=>\(\widehat{DCB}=\widehat{EBC}\)

=\(\widehat{KBC}=\widehat{KCB}\)

=>ΔKBC cân tại K

Bài 2:

ΔAHB vuông tại H

=>\(HA^2+HB^2=AB^2\)

=>\(HB^2=13^2-12^2=25\)

=>\(HB=\sqrt{25}=5\left(cm\right)\)

BC=BH+CH

=5+16

=21(cm)

ΔAHC vuông tại H

=>\(AH^2+HC^2=AC^2\)

=>\(AC^2=12^2+16^2=400\)

=>\(AC=\sqrt{400}=20\left(cm\right)\)

Chu vi tam giác ABC là:

AB+AC+BC=13+20+21=34+20=54(cm)

31 tháng 12 2023

a: Xét ΔMBD vuông tại M và ΔNCE vuông tại N có

DB=EC

\(\widehat{DBM}=\widehat{ECN}\)(ΔABC cân tại A)

Do đó: ΔMBD=ΔNCE

b: Ta có: ΔMBD=ΔNCE

=>MB=NC

Ta có: AM+MB=AB

AN+NC=AC

mà MB=NC và AB=AC

nên AM=AN

Xét ΔAMK vuông tại M và ΔANK vuông tại N có

AK chung

AM=AN

Do đó: ΔAMK=ΔANK