a) S=3 + 3^3 + 3^5 +....+3^99
b) S=101 + 100 . 2^2 + 99 . 2^4+....+2^200
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, S= 1/1*2 + 1/2*3 + 1/3*4 +...+1/99*100
S= 1/1 - 1/2 + 1/2 - 1/3 + 1/3 - 1/4 +...+ 1/99 - 1/100
S= 1/1 - 1/100
S= 100/100 - 1/100
S= 99/100
b, S= 1/1*3 + 1/3*5 + 1/5*7 +...+1/99*101
S= 1/2* (2/1*3 + 2/3*5 + 2/5*7 +...+ 2/99*101)
S= 1/2* (1/1 - 1/3 + 1/3 - 1/5 + 1/5 - 1/7 +...+ 1/99 - 1/101)
S= 1/2* (1/1 - 1/101)
S= 1/2* (101/101 - 1/101)
S= 1/2* 100/101
S= 50/101
Chúc bạn học tốt nha
S=(1-2)+(3-4)+(5-6)+...+(199-200)
S=(-1)+(-1)+...+(-1)
S=(-1).100=-100
S=1+(2-3)+(-4+5)+...+(98-99)+(-100+101)
S=1+(-1)+1+..+(-1)+1
S=1+25.(-1)+25.1
S=1+(-25)+25
S=1+0
=1
bạn ấn vào đúng 0 sẽ ra kết quả, mình làm bài này rồi dễ lắm
A = 1*2*3 + 2*3*4 + 3*4*5 ... + 99*100*101
=> 4A = 1*2*3*4 + 2*3*4*4 + 3*4*5*4 + ... +99*100*101*4
=> 4A = 1*2*3*4 + 2*3*4*(5 - 1) + 3*4*5*( 6 - 2) + ... + 99*100*101*(102 - 98)
=> 4A = 1*2*3*4 + 2*3*4*5 - 1*2*3*4 + 3*4*5*6 - 2*3*4*5 + ... + 99*100*101*102 - 98*99*100*101
=> 4A = 99*100*101*102
=> 4A = 101989800
=> A = 25497450
cho mi sửa lại:
\(a) A = 1^2+2^3+3^4+...+2014^{2015} b) B = 101^2+102^2+...+199^2+200^2 c) C = 1^3+2^4+3^5+4^6+...+99^{101}+100^{102}\)
S1=1+2+3+...+999
Số số hạng S1= (999-1):1+1=999(số hạng)
tổng S1= \(\left(999+1\right)+\left(998+2\right)+...+\left(499+501\right)+500\)
\(=\left(999+1\right).499+500\)
\(=499500\)
S2=1-2+3-4+...+99-100+101
=(1-2)+(3-4)+...+(99-100)+101
=(-1)+(-1)+...+(-1)+101
=(-1).50+101
=(-50)+101
=51
bạn nhân cả 2 vế cho 32 nó sẽ đc 33 cộng 35 cộng ..... cộng3101 rồi trừ 2 vế cho s khi đó sẽ chỉ còn 3101-3 nên đáp án = 3101-3 nhé
còn câu b thì tách ra xong làm bên cộng trc rồi làm bên có số mũ sau bên có số mũ thì áp dụng câu a là lam đc