K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
17 tháng 7 2023

Lời giải:

Gọi $ƯCLN(n+5, n+6)=d$

$\Rightarrow n+5\vdots d; n+6\vdots d$

$\Rightarrow (n+6)-(n+5)\vdots d$

$\Rightarrow 1\vdots d\Rightarrow d=1$

Vậy $ƯCLN(n+5, n+6)=1$ hay $n+5, n+6$ là 2 số nguyên tố cùng nhau.

20 tháng 12 2022

Gọi ƯCLN ( 2n + 3 , 3n + 5 ) là d.

Ta có : 2n + 3 chia hết cho d.

           3n + 5 chia hết cho d.

=> 3( 2n + 3 ) chia hết cho d.

=> 2(3n + 5 ) chia hết cho d.

=> 6n + 9 chia hết cho d.

=> 6n +10 chia hết cho d.

Vậy ( 6n + 10 ) - ( 6n + 9 ) chia hết cho d.

      => 1 chia hết cho d.

=> d thuộc ước của 1.

=> d = 1.

=> ƯCLN ( 2n + 3 , 3n + 5 ) = 1.

Vậy 2n + 3 và 3n + 5 là hai số nguyên tố cùng nhau.

5 tháng 12 2017

Đặt UCLN (4n+5 ; 5n+6) = d

Vì 4n+5 chia hết cho d và 5n+6 chia hết cho d

=> (4n+5) - (5n+6) chia hết cho d

=> 5(4n+5) - 4(5n+6) chia hết cho d

=> (20n + 25) - (20n + 24) chia hết cho d

=> 1 chia hết cho d

=> d = 1

Vì d =1 nên 4n+5 và 5n+6 là 2 số nguyên tố cùng nhau!

Chúc bạn học tốt!

5 tháng 12 2017

Gọi d là ước chung lớn nhất của 4n+5 và 5n+ 6 \(\Rightarrow\)4n + 5 và 5n +6 chia hết cho d.

Vậy có : (4n +5 -5n+6 ) chia hết d.

           Từ đó suy ra 1 chia hết cho d. Như vậy d chỉ có thể là 1. Các số nguyên tố cùng nhau có ước chung lớn nhất là 1=> 4n + 5 và 5n+6 là hai số nguyên tố cùng nhau.

19 tháng 12 2015

gọi d là ƯCLN(2n+3;n+1)

Ta có:n+1 chia hết cho d =>2n+2chia hết cho d(1)

         2n+3 chia hết cho d(2)

Từ (1)(2)=>(2n+3)-(2n+2)chia hết cho d

                           hay 1 chia hết cho d

Vậy d=1=>2n+3 và n+1 là hai số nguyên tố cùng nhau(đpcm)

19 tháng 12 2015

làm ơn làm phước cho mk 3 tick đi mk mà

please

29 tháng 12 2015

a)Vì hai số tự nhiên liên tiếp có UC là 1 nên =>Hai số tự nhiên lien tiếp khác 0 là hai số nguyên tố cùng nhau

b)Vì hai số tự nhiên liên tiếp có UC là 1 nên =>Hai số tự nhiên lien tiếp là hai số nguyên tố cùng nhau

tick nha

25 tháng 7 2021

Gọi (n + 6 ; n + 7) = d

=> \(\hept{\begin{cases}n+6⋮d\\n+7⋮d\end{cases}}\Leftrightarrow\left(n+7\right)-\left(n+6\right)⋮d\Leftrightarrow1⋮d\Leftrightarrow d=1\)

=> (n + 6 ; n + 7) = 1

Vậy n + 6 ; n + 7 là 2 số nguyên tô cùng nhau \(\forall n\inℕ\)