- CMR 3x+5y chia hết cho 7 <=> x+4y chia hết cho 7
- Tìm x thuộc Z : 12+5x:4+x
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
12+5x chia hết cho 4+x
4+x+4x+8 chia hết 4+x
4x+8 chia hết cho 4+x
8x+4 chia hết cho 4+x
8 chia hết cho 4+x
4+x thuộc ước của 8.
bài 1 bạn kia giải rồi nha , mình giải bài 2
3x + 5y ⋮ 7
<=> 3x + 12y - 7y ⋮ 7
<=> 3(x + 4y) - 7y ⋮ 7
Vì 7y ⋮ 7 . Để 3(x + 4y) - 7y ⋮ 7 <=> 3(x + 4y) ⋮ 7
Mà 3 ko chia hết 7 => x + 4y ⋮ 7 ( đpcm )
Đặt A = 3x + 5y và B = x + 4y
Theo bài ra ta có: 3B - A = (3x + 12y) - (3x - 5y) = 7y chia hết cho 7
Nếu A chia hết cho 7 thì 3B cũng chia hết cho 7
=> B chia hết cho 7
Nếu B chia hết cho 7 => 3B chia hết cho 7 => A chia hết cho 7 ( Theo t/c chia hết của 1 tổng)
giả sử :
3x+5y chia hết 7
=> 5(3x+5y) chia hết 7 (5,7)=1
=>15x+25y chia hết 7
=>(14x + 21y) + (x+4y)
mà 14x + 21y chia hết 7 => 3x+5y chia hết cho 7 <=> x+4y chia hết 7
3x +5y chia hết cho 7
3x + 5y + 7y chia hết cho 7
3x + 12y chia hết cho 7
3(x + 4y) chia hết cho 7
(3 , 7) = 1
Vậy x + 4y chia hết cho 7
Bạn tham khảo cái này: https://hoidap247.com/cau-hoi/330556
Nếu là chia hết 49 thì bạn tham khảo cái này: https://hoidap247.com/cau-hoi/330556
Bài 1:
A = 32 + 33 + 34 + ... + 32018
3A = 33 + 34 + 35 + ... + 32019
3A - A = (33 + 34 + 35 + ... + 32019) - (32 + 33 + 34 + ... + 32018)
2A = 32019 - 9
A = (32019 - 9) : 2
= (32016.33 - 9) : 2
= [ (34)504.27 - 9] : 2
= [ (...1)504.27 - 9] : 2
= [ (...1).27 - 9] : 2
= [ (...7) - 9] : 2
= (....8) : 2
= ...4
Vậy c/s tận cùng của A là 4
Bài 2:
Ta có:
1019 + 1018 + 1017
= 1016.103 + 1016.102 + 1016.10
= 1016.(103 + 102 + 10)
= 1016.1110
= 1016.2.555
Vì 555 chia hết cho 555 nên 1016.2.555 chia hết cho 555
Vậy 1019 + 1018 + 1017 chia hết cho 555 (đpcm)
Bài 3:
x + 6 chia hết cho x + 2
=> x + 2 + 4 chia hết cho x + 2
=> 4 chia hết cho x + 2
=> x + 2 thuộc Ư(4) = {\(\pm1;\pm2;\pm4\)}
x + 2 | 1 | -1 | 2 | -2 | 4 | -4 |
x | -1 | -3 | 0 | -4 | 2 | -6 |
Vậy x = {-1;-3;0;-4;2;-6}
Bài 4:
Giả sử x + 4y chia hết cho 7 (1)
Vì 3x + 5y chia hết cho 7 nên 2(3x + 5y) chia hết cho 7
=> 6x + 10y chia hết cho 7 (2)
Từ (1) và (2) => (x + 4y) + (6x + 10y) chia hết cho 7
=> x + 4y + 6x + 10y chia hết cho 7
=> (x + 6x) + (4y + 10y) chia hết cho 7
=> 7x + 14y chia hết cho 7
=> 7(x + 2y) chia hết cho 7
=> Giả sử đúng
Vậy x + 4y chia hết cho 7 (đpcm)
Bài 5:
1, Ta có: \(-\left(x+2\right)^{2018}\le0\)
\(\Rightarrow-1-\left(x+2\right)^{2018}\le0\)
\(\Rightarrow A\le0\)
Dấu " = " xảy ra <=> (x + 2)2018 = 0 <=> x = -2
Vậy GTNN của A là -1 khi x = -2
2, Ta có: \(x^2\ge0\)
\(\left|2y-18\right|\ge0\)
\(\Rightarrow x^2+\left|2y-18\right|\ge0\)
\(\Rightarrow-9+x^2+\left|2y-18\right|\ge-9\)
Dấu " = " xảy ra <=> \(\left\{\begin{matrix}x^2=0\\\left|2y-18\right|=0\end{matrix}\right.\Leftrightarrow\left\{\begin{matrix}x=0\\y=9\end{matrix}\right.\)
Vậy GTLN của B là -9 khi \(\left\{\begin{matrix}x=0\\y=9\end{matrix}\right.\)
Bài 6:
1, xy + 2x - y - 2 = 5
<=> x(y + 2) - (y + 2) = 5
<=> (x - 1)(y + 2) = 5
=> x - 1 và y + 2 thuộc Ư(5) = {\(\pm1;\pm5\)}
Ta có bảng:
x - 1 | 1 | -1 | 5 | -5 |
y + 2 | 5 | -5 | 1 | -1 |
x | 2 | 0 | 6 | -4 |
y | 3 | -7 | -1 | -3 |
Vậy các cặp (x;y) là (2;3) ; (0;-7) ; (6;-1) ; (-4;-3)
2, x + y = 2xy
<=> 2xy - x - y = 0
<=> 2(2xy - x - y) = 2.0
<=> 4xy - 2x - 2y = 0
<=> (4xy - 2x) - 2y - 1 = 0 - 1
<=> 2x(2y - 1) - (1 - 2y) = -1
<=> (2x - 1)(1 - 2y) = -1
=> 2x - 1 và 1 - 2y thuộc Ư(-1) = {\(\pm1\)}
Ta có bảng:
2x - 1 | 1 | -1 |
1 - 2y | -1 | 1 |
x | 1 | 0 |
y | 1 | 0 |