Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt A = 3x + 5y và B = x + 4y
Theo bài ra ta có: 3B - A = (3x + 12y) - (3x - 5y) = 7y chia hết cho 7
Nếu A chia hết cho 7 thì 3B cũng chia hết cho 7
=> B chia hết cho 7
Nếu B chia hết cho 7 => 3B chia hết cho 7 => A chia hết cho 7 ( Theo t/c chia hết của 1 tổng)
giả sử :
3x+5y chia hết 7
=> 5(3x+5y) chia hết 7 (5,7)=1
=>15x+25y chia hết 7
=>(14x + 21y) + (x+4y)
mà 14x + 21y chia hết 7 => 3x+5y chia hết cho 7 <=> x+4y chia hết 7
Ta xét tổng :
2 ( 3x + 5y ) + (x + 4y ) = 6x + 10y + x + 4y
= (6x + x ) + ( 10y + 4y )
= 7x + 14y
Vì 7x chia hết cho 7
14y chia hết cho 7
\(\Rightarrow\) 7x + 14y chia hết cho 7
Mà 3x + 5y chia hết cho 7
\(\Rightarrow\) x + 4y chia hết cho 7
Vậy x + 4y chia hết cho 7.
Xét 3(x+4y)=3x+12y=(3x+5y)+7y
Nếu 3x+5y \(⋮\)7 thì (3x+5y)+7y \(⋮\)7 tức 3(x+4y) \(⋮\)7
Mà (3;7)=1
=> x+4y \(⋮\)7
Nhớ tick nha!
1 giải
Ta có 17 chia hết cho 17
suy ra 17a+3a+b chia hết cho 17
suy ra 20a+2b chia hết cho 17
rút gọn cho 2
suy ra 10a+b chia hét cho 17
2 giải
* nếu a-5b chia hết cho 17 thì 10a + b chia hết cho 17
vì a-5b chia hết cho 17 nên 10(a-5b) chia hết cho 17 => 10a-50b chia hết cho 17 => 10a-50b+51b chia hết cho 17 hay 10a + b chia hết cho 17 (1) *
nếu 10a + b chia hết cho 17 thì a-5b chia hết cho 17
vì 10a+b chia hết cho 17 nên 10a + b - 51b chia hết cho 17 => 10a - 50b chia hết cho 17 => 10(a-5) chia hết cho 17 mà (10;17)=1 nên a-5b chia hết cho 17 (2)
Từ (1) và (2) suy ra điều phải chứng minh
3 bó tay
Câu trả lời hay nhất: + ta chứng minh a,b,c có ít nhất một số chia hết cho 3
giả sử cả 3 số trên đều không chia hết cho 3
=> a^2 = 1 (mod3) và b^2 = 1 (mod3) (bình phương 1 số chia hết cho 3 hoạc chia 3 dư 1)
=> a^2 + b^2 = 2 (mod3) nhưng c^2 = 1 (mod3) => mâu thuẫn
Vậy có ít nhất 1 số chia hết cho 3
+ tương tự,có ít nhất 1 số chia hết cho 4,vì giả sử cả 3 số a,b,c đều không chia hết cho 4
=> a^2 = 1 (mod4) và b^2 = 1 (mod4) => a^2 + b^2 = 2 (mod 4) nhưng c^2 = 1 (mod 4) => mâu thuẫn
vậy có ít nhất 1 số cgia hết cho 4
+ tương tự a^2 = 1 (mod 5) hoạc a^2 = -1 (mod 5) hoạc a^2 = 4 (mod 5)
và -1 + 1 = 0,1 + 4 = 5,-1 + 4 = 3
=> phải có ít nhất 1 số chia hết cho 5
Vậy abc chia hết cho BCNN(3,4,5) = 60 hay abc chia hết 60
3x +5y chia hết cho 7
3x + 5y + 7y chia hết cho 7
3x + 12y chia hết cho 7
3(x + 4y) chia hết cho 7
(3 , 7) = 1
Vậy x + 4y chia hết cho 7
12+5x chia hết cho 4+x
4+x+4x+8 chia hết 4+x
4x+8 chia hết cho 4+x
8x+4 chia hết cho 4+x
8 chia hết cho 4+x
4+x thuộc ước của 8.
bài 1 bạn kia giải rồi nha , mình giải bài 2
3x + 5y ⋮ 7
<=> 3x + 12y - 7y ⋮ 7
<=> 3(x + 4y) - 7y ⋮ 7
Vì 7y ⋮ 7 . Để 3(x + 4y) - 7y ⋮ 7 <=> 3(x + 4y) ⋮ 7
Mà 3 ko chia hết 7 => x + 4y ⋮ 7 ( đpcm )