K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔABC vuông tại A và ΔEAC vuông tại E có

góc C chung

=>ΔABC đồng dạng với ΔEAC

Xét ΔABC vuông tại A có AE là đường cao

nên AE^2=BE*CE

b: Xét tứ giác AEDC có

góc AEC=góc ADC=90 độ

=>AEDC là tứ giác nội tiếp

=>góc EAD=góc BCO

 

13 tháng 12 2021

a: Xét ΔABE và ΔADC có 

\(\widehat{ABE}=\widehat{ADC}\)

\(\widehat{BAE}=\widehat{DAC}\)

Do đó: ΔABE\(\sim\)ΔADC

Suy ra: \(AB\cdot AC=AD\cdot AE\)

trên AC lấy điểm I sao cho ABD = ADI

suy ra tam giác ABD đồng dạng tam giác ADI (g.g)

AD/AI = AB/AD

dùng tính chất a/b=c/d thì a.d=b.c

suy ra AD= AI .AB

mà AI < AC

suy ra AD2  < AC.AB

K MÌNH NHA 

25 tháng 3 2020

Qua D vẽ đường thẳng song song với AC cắt AB ở K

Ta có AD là đường phân giác trong của \(\Delta ABC\)

\(\Rightarrow\frac{AC}{AB}=\frac{CD}{DB}\)(theo tính chất đường phân giác trong tam giác)

CE là đường phân giác trong của \(\Delta ABC\)nên \(\frac{AC}{BC}=\frac{EA}{EB}\)(theo tính chất đường phân giác trong tam giác)

Mà AB > BC (gt) nên \(\frac{AC}{AB}< \frac{AC}{BC}\Rightarrow\frac{DC}{DB}< \frac{EA}{EB}\)(1)

\(\Delta ABC\)có \(DK//AC\)nên \(\frac{DC}{DB}=\frac{KA}{KB}\)(2)

Từ (1) và (2) suy ra \(\frac{KA}{KB}< \frac{EA}{EB}\)

\(\Rightarrow\frac{KA}{KB}+1< \frac{EA}{EB}+1\Rightarrow\frac{AB}{KB}< \frac{AB}{EB}\Rightarrow KB>EB\)

Do đó K không trùng E. Do vậy DE cắt AC, gọi M là giao điểm của DE và AC

Ta có \(\widehat{ADE}>\widehat{DAM}\)(\(\widehat{ADE}\)là góc ngoài của \(\Delta DAM\))

Mà \(\widehat{DAM}=\widehat{DAE}\)(gt) \(\Rightarrow\widehat{ADE}>\widehat{DAE}\)

\(\Rightarrow AE>DE\)(quan hệ giữa góc và cạnh đối diện trong tam giác) (3)

Mặt khác \(\widehat{DCE}=\widehat{ECA}\left(gt\right)\)mà \(\widehat{ECA}>\widehat{CED}\)(\(\widehat{ECA}\)là góc ngoài của \(\Delta CEM\))

Do đó \(\widehat{DCE}>\widehat{CED}\Rightarrow DE>DC\)(quan hệ giữa góc và cạnh đối diện trong tam giác) (4)

Từ (3) và (4) suy ra AE > DE > DC (đpcm)

a: Xét ΔABC có AH là đường cao

nên \(S_{ABC}=\dfrac{1}{2}\cdot AH\cdot BC\left(1\right)\)

Ta có: ΔABC vuông tại A

=>\(S_{ABC}=\dfrac{1}{2}\cdot AB\cdot AC\left(2\right)\)

Từ (1) và (2) suy ra \(AH\cdot BC=AB\cdot AC\)

b: Xét ΔABD và ΔCBE có

\(\widehat{ABD}=\widehat{CBE}\)(BE là phân giác của góc ABC)

\(\widehat{BAD}=\widehat{BCE}\left(=90^0-\widehat{ABC}\right)\)

Do đó: ΔABD~ΔCBE

1: góc ECF=góc EAB=1/2(góc ABC+góc ACB)

AB<AC

=>góc ACB<góc ABC

=>(góc ABC+góc ACB)/2>(góc ACB+góc ACB)/2=góc ACB=góc ECA

=>góc ECF>góc ECA

=>A nằm giữa E và F

2: Xét ΔAEB và ΔCEF có

góc E chung

'góc EAB=góc ECF

=>ΔAEB đồng dạng với ΔCEF

=>EA/EC=EB/EF

=>EA*EF=EB*EC