Cho hình vuông ABCD. Trong hình vuông lấy điểm M sao cho góc MAB bằng góc MBA bằng 18 độ. Chứng minh rằng: tam giác MCD là tam giác đều
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta lại chọn một điểm N trong hình vuông sao cho góc DAN= góc ADN = 15độ.
Ta thấy AND=AMB --> AN=AM. tam giác NMA ,có góc NAM=90-15-15=60 và AN=AM nên NMA là tam giác đều.--> AN=NM
Góc AND=180-15-15=150 độ--> Góc DNM=360-150-60= 150 độ
Vậy góc AND= góc DNM.
So sánh 2 tg AND và DNM chúng bằng nhau cạnh góc góc.
Vậy: AD=DM và góc MDC=90-15-15=60 độ. (dpcm)
Vẽ ra phía ngoài hình vuông 1 tam giác đều ABE. Vì EA=EB; MA=MB nên EM là đường trung trực AB, suy ra ˆMEB=30∘
VÌ ΔEBM=ΔCBM(c.g.c), suy raˆMCB=ˆMEB=30∘⇒ˆMCD=60∘(1).
Mặt khác, ΔAMD=ΔBMC(c.g.c), suy ra: MD=MC (2)
Từ (1) & (2) =>ΔMCDđều (đpcm)
tam giác AMD= BMC (c-g-c)
trên nửa mặt phẳng bờ AD chứa BC kẻ Ax và Dy sao cho Ax, Dy tạo vs AD các góc 15 độ, chứng cắt nhau tại J
Tam giác AJD có góc DAJ=JDA=15
=> t,g ADJ cân tại J
ta có t.g AJDJ= ABM (g-c-g)
=>AJ=AM
=> t.g AMJ cân tại A mà MAJ=60 (DAJ+JAM+MAB=90)
=> t.g ẠM đều
=>JA=JM
ta có MJS=AMJ+MAJ=60+60=120 (góc ngoài t.g)
tương tự ta có SJD=30
vậy MJD=SJM+SJD=120+30=150
lại có t.g JDM có JD=JM (cùng= JA)
=> JDM cân tại J mà góc MJD=120
=>JDM=15
ta có góc ADJ + JDM+MDC=90
15+15+mdc=90
MDC =60
tam giác MCD cân mà có góc D =60
=> MCD là tam giác đều
a) Xét ΔABMΔ��� có :
ˆMAB=ˆMBA(gt)���^=���^(��)
=> ΔABMΔ��� cân tại M
Do đó ta có : ˆAMB=180o−(ˆMAB+ˆMBA)���^=180�−(���^+���^) (tổng 3 góc của 1 tam giác)
=> ˆAMB=180o−2.30o=120o���^=180�−2.30�=120�
Ta có : ˆBAC=ˆMAB−ˆMAC���^=���^−���^
=> 90o=30o−ˆMAC90�=30�−���^
=> ˆMAC=90o−60o���^=90�−60�
=> ˆMAC=60o���^=60�
b) Có : ˆAMB+ˆAMC=180o���^+���^=180� (kề bù)
=> 120o+ˆAMC=180o120�+���^=180�
=> ˆAMC=180o−120o���^=180�−120�
=> ˆAMC=60o���^=60�
Xét ΔAMCΔ��� có :
ˆMAC=ˆAMC(=60o)���^=���^(=60�)
=> ΔAMCΔ��� cân tại A
Mà có : ˆACM=180o−(ˆMAC+ˆAMC)���^=180�−(���^+���^) (tổng 3 góc của 1 tam giác)
=> ˆACM=180o−2.60o=60o���^=180�−2.60�=60�
Thấy : ˆAMC=ˆMAC=ˆACM=60o���^=���^=���^=60�
Do đó ΔAMCΔ��� là tam giác đều (đpcm)
- Ta có : Do ΔAMBΔ��� cân tại A (cmt - câu a) (1)
=> BM=AM��=�� (tính chất tam giác cân)
Mà có : ΔAMCΔ��� cân tại M (cmt)
=> AM=MC��=�� (tính chất tam giác cân) (2)
- Từ (1) và (2) => BM=MC(=AC)��=��(=��)
Mà : BM=12BC��=12��
Do vậy : AC=12BC
a: Xét ΔMAB có góc MAB=góc MBA
nên ΔMAB cân tại M
=>góc AMB=180-2*30=120 độ và góc MAC=90-30=60 độ
b: Xét ΔMAC có góc MAC=góc MCA=60 độ
nên ΔMAC đều