tìm x nguyên biết:
a,(x+3).(2+x)>0
b, \(\frac{lx+6l}{x-7}\)>= 0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1.Tính
a) 7.[ 6 : 2 - 15 :(-3) - l-3l ]
= 7.[ 3 + 5 - 3]
= 7.[( 3 - 3 ) + 5]
= 7.[0 + 5]
= 7.5
= 35
b) 159.(18-59) - 59 .(18-159)
= 159 . ( - 41) - 59 . ( - 141 )
= ( - 6519 ) - ( - 8319 )
= 1800
2.Tìm x thuộc Z
a) x + 15 = 20 -4x
x+4x=20-15
5x=5
x=5:5
x=1
Vậy x=1
b) 3 - lx - 1l =0
|x-1|=3
* x-1=3 * x-1=-3
x=3+1 x=-3+1
x=4 x=-2
Vậy x=4 hoặc x=-2
c) 7(x-3) - 5 (3-x) = 11x - 5
7x-21-15+5x=11x-5
-21-15+5=11x-7x-5x
-31=-x
31=x
Vậy x=31
a) 8 - |x + 2| = 5
-|x + 2| = 5 - 8
-|x + 2| = -3
|x + 2| = 3
x + 2 = 3; -3
x + 2 = 3 hoặc x + 2 = -3
x = 3 - 2 x = -3 - 2
x = 1 x = -5
=> x = 1 hoặc x = -5
a)(2x-3)(x+5)=0
\(\Leftrightarrow\left[{}\begin{matrix}2x-3=0\\x+5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{3}{2}\\x=-5\end{matrix}\right.\)
Vậy x=3/2 hoặc x=-5
a) \(\left(2x-3\right)\left(x+5\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-3=0\\x+5=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{3}{2}\\x=-5\end{matrix}\right.\)
Vậy phương trình có tập nghiệm là: \(S=\left\{\dfrac{3}{2};-5\right\}\)
b) \(3x\left(x-2\right)-7\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(3x-7\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\3x-7=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=\dfrac{7}{2}\end{matrix}\right.\)
Vậy phương trình có tập nghiệm là: \(S=\left\{2;\dfrac{7}{2}\right\}\)
c) \(5x\left(2x-3\right)-6x+9=0\)
\(\Leftrightarrow5x\left(2x-3\right)-3\left(2x-3\right)=0\)
\(\Leftrightarrow\left(2x-3\right)\left(5x-3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-3=0\\5x-3=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{3}{2}\\x=\dfrac{3}{5}\end{matrix}\right.\)
Vậy phương trình có tập nghiệm là: \(S=\left\{\dfrac{3}{2};\dfrac{3}{5}\right\}\)
a) \(\left(x-2\right)\left(x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\x+1=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-1\end{matrix}\right.\)
b) \(\left(x^2+5\right)\left(x^2-25\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2+5=0\\x^2-25=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x^2=-5\\x^2=25\end{matrix}\right.\) \(\Leftrightarrow x^2=25\) \(\Leftrightarrow x=\pm5\)
a) \(\Leftrightarrow x^2-4x-x^2+6x-9=0\\ \Leftrightarrow2x=9\\ \Leftrightarrow x=4,5\)
b) \(\Leftrightarrow x^2-3x-10=0\\ \Leftrightarrow\left(x^2+2x\right)-\left(5x+10\right)=0\\ \Leftrightarrow x\left(x+2\right)-5\left(x+2\right)=0\\ \left(x-5\right)\left(x+2\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=5\\x=-2\end{matrix}\right.\)
c) \(\Leftrightarrow\left(2x-3-7\right)\left(2x-3+7\right)=0\\ \Leftrightarrow\left(2x-10\right)\left(2x+4\right)=0\\ \Leftrightarrow\left(x-5\right)\left(x+2\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=5\\x=-2\end{matrix}\right.\)
d) \(\Leftrightarrow\left(2x+7\right)\left(x-5\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{7}{2}\\x=5\end{matrix}\right.\)