K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 6 2015

\(\frac{x}{2}+\frac{x}{2.3}+\frac{x}{3.4}+.....+\frac{x}{2015.2016}=\frac{2015}{4032}\)

\(x.\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+....+\frac{1}{2015.2016}\right)=\frac{2015}{4032}\)

\(x.\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+....+\frac{1}{2015}-\frac{1}{2016}\right)=\frac{2015}{4032}\)

\(x.\left(1-\frac{1}{2016}\right)=\frac{2015}{4032}\)

\(x.\frac{2015}{2016}=\frac{2014}{4032}\)

\(x=\frac{2015}{4032}:\frac{2015}{2016}\)

\(x=\frac{1}{2}\)

17 tháng 6 2015

\(=\frac{x}{1}-\frac{x}{2}+\frac{x}{2}-\frac{x}{3}+...+\frac{x}{2015}-\frac{x}{2016}=\frac{2015}{4023}\)

\(=\frac{x}{1}-\frac{x}{2016}=\frac{2015}{4023}\)

\(=\frac{2015}{2016}x=\frac{2015}{4023}\)

=> x = \(\frac{2015}{4023}\cdot\frac{2016}{2015}\)= 2016/4023

22 tháng 6 2015

\(\left(\frac{7}{1.2}+\frac{7}{2.3}+\frac{7}{3.4}+...+\frac{7}{2015.2016}\right):\frac{2015}{2016}\)

=\(7\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2015.2016}\right):\frac{2015}{2016}\)

=\(7\left(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2015}-\frac{1}{2016}\right):\frac{2015}{2016}\)

=\(7\left(\frac{1}{1}-\frac{1}{2016}\right):\frac{2015}{2016}=7.\frac{2015}{2016}:\frac{2015}{2016}=7\)

22 tháng 6 2015

\(\left(\frac{7}{1\cdot2}+\frac{7}{2\cdot3}+\frac{7}{3\cdot4}+...+\frac{7}{2015\cdot2016}\right):\frac{2015}{2016}\)

\(=\left(7-\frac{7}{2}+\frac{7}{2}-\frac{7}{3}+\frac{7}{3}-\frac{7}{4}+...+\frac{7}{2015}-\frac{7}{2016}\right):\frac{2015}{2016}\)

\(=\left(7-\frac{7}{2016}\right):\frac{2015}{2016}=\frac{2015}{288}:\frac{2015}{2016}=\frac{2015}{288}\cdot\frac{2016}{2015}=\frac{2016}{288}=7\)

16 tháng 8 2016

\(\frac{2}{1.2}+\frac{2}{2.3}+..........+\frac{2}{x\left(x+1\right)}=1\frac{2013}{2015}\)

\(\Rightarrow2\left(\frac{1}{1.2}+\frac{1}{2.3}+........+\frac{1}{x\left(x+1\right)}\right)=\frac{4028}{2015}\)

\(\Rightarrow1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+..........+\frac{1}{x}-\frac{1}{x+1}=\frac{4028}{2015}:2\)

\(\Rightarrow1-\frac{1}{x+1}=\frac{2014}{2015}\)

\(\Rightarrow\frac{1}{x+1}=1-\frac{2014}{2015}\)

\(\Rightarrow\frac{1}{x+1}=\frac{1}{2015}\)

\(\Rightarrow x+1=2015\Rightarrow x=2014\)

16 tháng 8 2016

\(\frac{2}{1\times2}+\frac{2}{2\times3}+\frac{2}{3\times4}+...+\frac{2}{x\left(x+1\right)}=1\frac{2013}{2015}\)

\(2\times\left(\frac{1}{1\times2}+\frac{1}{2\times3}+\frac{1}{3\times4}+...+\frac{1}{x\times\left(x+1\right)}\right)=1\frac{2013}{2015}\)

\(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{x}-\frac{1}{x+1}=1\frac{2013}{2015}\div2\)

\(1-\frac{1}{x+1}=\frac{2014}{2015}\)

\(\frac{1}{x+1}=1-\frac{2014}{2015}\)

\(\frac{1}{x+1}=\frac{1}{2015}\)

\(x+1=2015\)

\(x=2015-1\)

\(x=2014\)

29 tháng 3 2020

Mk nghi~ bn ne^n xem La.i de^` nhe'

29 tháng 3 2020

à, minh ghi thiếu.

=-1

8 tháng 1 2019

\(\Leftrightarrow x.\left(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{1999}-\frac{1}{2000}\right)=1\)

\(\Leftrightarrow x.\left(1-\frac{1}{2000}\right)=1\Leftrightarrow x\cdot\frac{1999}{2000}=1\Leftrightarrow x=\frac{2000}{1999}\)

7 tháng 4 2016

\(\frac{x}{1.2}+\frac{x}{2.3}+\frac{x}{3.4}+...+\frac{x}{2006.2007}=\frac{2006}{2007}\)

\(\frac{x}{1}-\frac{x}{2}+\frac{x}{2}-\frac{x}{3}+\frac{x}{3}-\frac{x}{4}+...+\frac{x}{2006}-\frac{x}{2007}=\frac{2006}{2007}\)

\(x-\frac{x}{2007}=\frac{2006}{2007}\)

\(\frac{2007x}{2007}-\frac{x}{2007}=\frac{2006}{2007}\)

\(2007x-x=2006\)

\(2006x=2006\)

\(x=1\)

7 tháng 4 2016

theo mình x =1 không biết đúng không