K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 1 2017

a chia hết cho m suy ra a = m.q (q thuộc N)

Suy ra k.a = k.(m.q)

Suy ra k.a chia hết cho m

T mk nha mk t lại cho mk hứa

28 tháng 8 2019

Ta có 

a chia hết cho m nên a có dạng

\(a=m.x\)   \(\left(x\in N\right)\)

Khi đó 

\(k\cdot a=k\cdot x\cdot m⋮m\)

25 tháng 1 2017

a ⋮ c => ma ⋮ c (1) 

b ⋮ c => nb ⋮ c (2)

Từ (1) ; (2) => ma + nb ⋮ c ( tính chất )

Cũng Từ (1) ; (2) => ma - nb ⋮ c ( tính chất )

4 tháng 1 2019

_____________________Giải_____________________

\(\hept{\begin{cases}a+2b⋮3\\3a+3b⋮3\end{cases}}\Rightarrow3a+3b-a-2b⋮3\Rightarrow2a+b⋮3\)

2. _____________________Giải________________________

\(\hept{\begin{cases}a-b⋮7\\7a+7b⋮7\end{cases}}\Rightarrow7a+a+7b-b⋮7\Rightarrow8a+6b⋮7\)

=> 2(4a+3b) chia hết cho 7  vì  (2;7)=1

=> 4a+3b chia hết cho 7 (đpcm)

AH
Akai Haruma
Giáo viên
30 tháng 7

Lời giải:

Chiều xuôi:

$m+4n\vdots 13$

$\Rightarrow 3(m+4n)\vdots 13$

$\Rightarrow 13(m+n)-3(m+4n)\vdots 13$

$\Rightarrow 10m+n\vdots 13(1)$

----------------

Chiều ngược:

$10m+n\vdots 13$

$\Rightarrow 13(m+n)-(10m+n)\vdots 13$

$\Rightarrow 3m+12n\vdots 13$

$\Rightarrow 3(m+4n)\vdots 13$

$\Rightarrow m+4n\vdots 13$ (2)

Từ $(1); (2)\Rightarrow m+4n\vdots 13$ khi và chỉ khi $10m+n\vdots 13$

25 tháng 12 2015

m + 4n chia hết cho 13 => 3m + 12n chia hết cho 13

Xét tổng: A = 3m + 12n + 10m + n = 13m + 13n chia hết cho 13

CM theo chiều xuôi (có m + 4n chia hết cho 13, CM 10m + n chia hết cho 13):

A chia hết cho 13

Mà m + 4n chia hết cho 13 => 3m + 12n chia hết cho 13

=> 10m + n chia hết cho 13

CM theo chiều ngược:

A chia hết cho 13

Mà 10m + n chia hết cho 13

=> 3m + 12n chia hết cho 13

=> 3(m + 4n) chia hết cho 13

Mà (3,13) = 1

=> m + 4n chia hết cho 13

Vậy:.

 

 

 

25 tháng 12 2015

Ta có: 10m+n chia hết cho 13

=>10m chia hết cho 13

mà 10 không chia hết cho 13 nên m chia hết cho 13

=>n chia hết cho 13 nên 4n chia hết cho 13

=>m+4n chia hết cho 13

=>đpcm(ghi lại đề)