Chứng minh rằng nếu:a chia hết cho m =>k.a chia hết cho m (k thuộc N)
giúp mình với!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có
a chia hết cho m nên a có dạng
\(a=m.x\) \(\left(x\in N\right)\)
Khi đó
\(k\cdot a=k\cdot x\cdot m⋮m\)
a ⋮ c => ma ⋮ c (1)
b ⋮ c => nb ⋮ c (2)
Từ (1) ; (2) => ma + nb ⋮ c ( tính chất )
Cũng Từ (1) ; (2) => ma - nb ⋮ c ( tính chất )
_____________________Giải_____________________
\(\hept{\begin{cases}a+2b⋮3\\3a+3b⋮3\end{cases}}\Rightarrow3a+3b-a-2b⋮3\Rightarrow2a+b⋮3\)
2. _____________________Giải________________________
\(\hept{\begin{cases}a-b⋮7\\7a+7b⋮7\end{cases}}\Rightarrow7a+a+7b-b⋮7\Rightarrow8a+6b⋮7\)
=> 2(4a+3b) chia hết cho 7 vì (2;7)=1
=> 4a+3b chia hết cho 7 (đpcm)
Lời giải:
Chiều xuôi:
$m+4n\vdots 13$
$\Rightarrow 3(m+4n)\vdots 13$
$\Rightarrow 13(m+n)-3(m+4n)\vdots 13$
$\Rightarrow 10m+n\vdots 13(1)$
----------------
Chiều ngược:
$10m+n\vdots 13$
$\Rightarrow 13(m+n)-(10m+n)\vdots 13$
$\Rightarrow 3m+12n\vdots 13$
$\Rightarrow 3(m+4n)\vdots 13$
$\Rightarrow m+4n\vdots 13$ (2)
Từ $(1); (2)\Rightarrow m+4n\vdots 13$ khi và chỉ khi $10m+n\vdots 13$
m + 4n chia hết cho 13 => 3m + 12n chia hết cho 13
Xét tổng: A = 3m + 12n + 10m + n = 13m + 13n chia hết cho 13
CM theo chiều xuôi (có m + 4n chia hết cho 13, CM 10m + n chia hết cho 13):
A chia hết cho 13
Mà m + 4n chia hết cho 13 => 3m + 12n chia hết cho 13
=> 10m + n chia hết cho 13
CM theo chiều ngược:
A chia hết cho 13
Mà 10m + n chia hết cho 13
=> 3m + 12n chia hết cho 13
=> 3(m + 4n) chia hết cho 13
Mà (3,13) = 1
=> m + 4n chia hết cho 13
Vậy:.
Ta có: 10m+n chia hết cho 13
=>10m chia hết cho 13
mà 10 không chia hết cho 13 nên m chia hết cho 13
=>n chia hết cho 13 nên 4n chia hết cho 13
=>m+4n chia hết cho 13
=>đpcm(ghi lại đề)
a chia hết cho m suy ra a = m.q (q thuộc N)
Suy ra k.a = k.(m.q)
Suy ra k.a chia hết cho m
T mk nha mk t lại cho mk hứa