K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 4 2021

Không biết câu c sai đề không thế ạ?

a: Xét ΔKNP vuông tại K và ΔHPN vuông tại H có

NP chung

\(\widehat{KNP}=\widehat{HPN}\)

Do đó: ΔKNP=ΔHPN

Suy ra: NK=PH

b: Xét ΔMNP có MK/MN=MH/MP

nên HK//NP

=>NKHP là hình thang

mà NH=KP

nên NKHP là hình thang cân

26 tháng 10 2023


 A  áp dụng hệ thức lượng trong tam giác....
+  MI=NI*IP
  MI=5*7
MI=35
BC=NI+IP
BC=5+7=12
+   MN=NP*NI
MN=  12*5=60
 

20 tháng 10 2017

a) Tính được MP = MQ = 5 cm; NP = NQ = 3 cm.

b) F là trung điểm của đoạn thẳng MN F nằm giữa hai điểm MN, đồng thời MF = NF = 3 cm

c) Tính được EF = 2 cm.

 

26 tháng 10 2023

a: NP=NI+IP

=5+7=12(cm)

Xét ΔMNP vuông tại M có MI là đường cao

nên \(\left\{{}\begin{matrix}MN^2=NI\cdot NP\\MP^2=PK\cdot PN\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}MN=\sqrt{5\cdot12}=2\sqrt{15}\left(cm\right)\\MP=\sqrt{7\cdot12}=2\sqrt{21}\left(cm\right)\end{matrix}\right.\)

b: trung tâm là cái gì vậy bạn?

c: Nếu kẻ như thế thì H trùng với I rồi bạn

26 tháng 10 2023

sửa lại chỗ câu b ghi lộn MP Chứ k phải NP

 

18 tháng 4 2021

tự vẽ hình nhé 

a, Xét \(\Delta\) MNP và \(\Delta\) HNM

< MNP chung 

<NMP=<NHM(=90\(^0\) )

b,=> \(\dfrac{MN}{HN}=\dfrac{NP}{MN}\) 

=> \(MN^2=NP\cdot NH\)

c, xét \(\Delta\) NMP vg tại M, áp dụng định lí Py - ta - go trong tam giác vg có

\(MN^2+MP^2=NP^2\)

=> \(NP^2=144\Rightarrow NP=12cm\)

Ta có \(MN^2=NH\cdot NP\)

Thay số:\(7,2^2=NH\cdot12\Rightarrow NH=4,32cm\)

 

 

18 tháng 4 2021

Cách tính MK mình chưa nghĩ ra mong bạn thông cảm 

16 tháng 3 2018

Tính được MP = MQ = 5cm; NP = NQ = 3cm.

16 tháng 9 2021

Bài 1 : 

Xét tam giác MNP vuông tại M, đường cao MH 

* Áp dụng hệ thức : \(MH^2=NH.HP\Rightarrow NH=\frac{MH^2}{HP}=\frac{36}{9}=4\)cm 

=> NP = HN + HP = 4 + 9 = 13 cm 

* Áp dụng hệ thức : \(MN^2=NH.NP=4.13\Rightarrow MN=2\sqrt{13}\)cm 

* Áp dụng hệ thức : \(MP^2=PH.NP=9.13\Rightarrow MP=3\sqrt{13}\)cm

16 tháng 9 2021

Bài 2 : 

Xét tam giác ABC vuông tại A, đường cao AH

* Áp dụng hệ thức : \(\frac{1}{AH^2}=\frac{1}{AC^2}+\frac{1}{AB^2}\Rightarrow\frac{1}{9}=\frac{1}{25}+\frac{1}{AB^2}\Rightarrow AB=\frac{15}{4}\)cm 

( bạn nhập biểu thức trên vào máy tính cầm tay rồi shift solve nhé ) 

* Áp dụng hệ thức : \(AC.AB=AH.BC\Rightarrow BC=\frac{\frac{15}{4}.5}{3}=\frac{25}{4}\)cm