Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)Xét tứ giác DNFP có
Góc NDP=DPF=PFN=90 độ
=> DNFP là hình chứ nhật
Do DF và PN là 2 đường chéo của hình chữ nhật DNFP=> DF=PN (đpcm)
Do tân giác MNP cân tại M => ME cũng là đường trung tuyến của tam giác MNP=> E là trung điểm của PN
Hình chữ nhật có 2 đường chéo cắt nhau tại trung điểm của mỗi đường
Mà E là tđ của PN => E là giao của PN và DF=> D,E,F thẳng hàng
b)Do DPFN là hình chữ nhật => góc HNE=EPK ( so le trong)
Xét 2 tam giác HEN(E=90 độ) và tam giác KEP(E=90 độ) có:
Góc HNE= góc EPK(chứng mih trên)
NE=EP (phần a)
góc PEK=HEN(=90 độ)
=> Tam giác HEN= tam giác KEP (g.c.g)
=>EK=EH => E là trung điểm của HK
Xét tứ giác HPKN có :
E là trung điểm của HK
E là tđ của PN
PN và HK vuông góc vs nhau
=> HPKN là hình thoi (đpcm)
tự vẽ hình nhé
a, Xét \(\Delta\) MNP và \(\Delta\) HNM
< MNP chung
<NMP=<NHM(=90\(^0\) )
b,=> \(\dfrac{MN}{HN}=\dfrac{NP}{MN}\)
=> \(MN^2=NP\cdot NH\)
c, xét \(\Delta\) NMP vg tại M, áp dụng định lí Py - ta - go trong tam giác vg có
\(MN^2+MP^2=NP^2\)
=> \(NP^2=144\Rightarrow NP=12cm\)
Ta có \(MN^2=NH\cdot NP\)
Thay số:\(7,2^2=NH\cdot12\Rightarrow NH=4,32cm\)
a: Xét ΔDMP vuông tại D và ΔENP vuông tại E có
góc P chung
=>ΔDMP đồng dạng với ΔENP
b: ΔDMP đồng dạng với ΔENP
=>PE/PD=MP/NP=MD/NE
=>PE/6=18/12=3/2
=>PE=9cm
a: Xét ΔMKN vuông tại K và ΔPMN vuông tại M có
góc N chung
=>ΔMKN đồng dạng với ΔPMN
b: NK=căn 15^2-12^2=9cm
PK=12^2/9=16cm
PN=9+16=25cm
c: ΔMNP vuông tại M có MK là đường cao
nên NM^2=NK*NP
a: Xét ΔKNP vuông tại K và ΔHPN vuông tại H có
NP chung
\(\widehat{KNP}=\widehat{HPN}\)
Do đó: ΔKNP=ΔHPN
Suy ra: NK=PH
b: Xét ΔMNP có MK/MN=MH/MP
nên HK//NP
=>NKHP là hình thang
mà NH=KP
nên NKHP là hình thang cân