Cho ΔABC vuông cân tại đỉnh A, M là trung điểm của BC. Trên cạnh BC lấy điểm D tuỳ ý (D khác M). Từ B,C hạ BE, CF vuông góc với AD. Chứng minh:
a) ΔAEB = ΔAFC
b) ΔAME = ΔCMF
c) ΔMEF vuông cân.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ABDC E
a) Vì AD phân giác BACˆBAC^ (gt)
=> ABAC=BDDCABAC=BDDC (t/c đường p/g ΔΔ )
=> ABAC+AB=BDBD+DCABAC+AB=BDBD+DC (t/c TLT)
=> 1212+20=BDBC1212+20=BDBC
=> 1232=BD281232=BD28
=> BD=12⋅2832=10,5BD=12⋅2832=10,5 cm
Ta có: BD+DC=BCBD+DC=BC (D ∈∈ BC)
=> DC=28−10,5=17,5DC=28−10,5=17,5 cm
Xét ΔΔ ABC có: DE // AB (gt)
=> DEAB=DCBCDEAB=DCBC (hệ qủa ĐL Ta-lét)
=> DE=AB⋅DCBC=12⋅17,528=7,5DE=AB⋅DCBC=12⋅17,528=7,5 cm
Ta có: ΔABC cân tại A
mà AM là đường trung tuyến
nên AM là đường phân giác
Xét ΔADE có
AK là đường cao
AK là đường phân giác
Do đó: ΔADE cân tại A
SUy ra: AD=AE
c, xét tam giác BEM và tam giác AFM có:
BE=AF(câu b)
BM=AM(do AM là trung tuyến của tam giác cân)
góc EBM =góc MAF(cùng phụ với góc ADM= góc BDE)
suy ra 2 tam giác trên bằng nhau
suy ra góc EMB= góc AMF( 2 góc tương ứng)
mặt khác: góc AMF+góc FMB=90 độ (câu a)
suy ra góc EMB+ góc FMB=90 độ
hay FM vuông góc với ME
hay tam giác EMF vuông tại M
chị làm đó rồi nhé
.......