K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài 1:Cho tam giác ABC cân tại A. Trên tia đối của tia BC lấy điểm M; trên tia đối của tia CBlấy điểm N sao cho MB = CN. Từ B hạBE AM ( E AM) ⊥ , từ C hạCF AN ( F AN) ⊥ Chứng minh rằng:a/ Tam giác AMN cân b/ BE = CF c/  BME = CNFBài 2: Cho tam giác ABC cân tại A, đường thẳng vuông góc với AB tại B cắt đườngthẳng vuông góc với AC tại C ở D. Chứng minh rằng AD là tia phân giác của góc BACBài 3:...
Đọc tiếp

Bài 1:
Cho tam giác ABC cân tại A. Trên tia đối của tia BC lấy điểm M; trên tia đối của tia CB
lấy điểm N sao cho MB = CN. Từ B hạ

BE AM ( E AM) ⊥ 

, từ C hạ

CF AN ( F AN) ⊥ 

Chứng minh rằng:
a/ Tam giác AMN cân b/ BE = CF c/

  BME = CNF
Bài 2: Cho tam giác ABC cân tại A, đường thẳng vuông góc với AB tại B cắt đường
thẳng vuông góc với AC tại C ở D. Chứng minh rằng AD là tia phân giác của góc BAC
Bài 3: Cho tam giác ABC vuông cân tại A. Qua A kẻ đường thẳng d ( d không cát đoạn
thẳng BC). Từ B hạ

BE d ( E d) ⊥ 

, từ C hạ

CF d ( F d) ⊥ 

. So sánh: BE + CF và FE?
Bài 4: Cho tam giác ABC vuông cân tại A, kẻ AH vuông góc với BC ( H thuộc BC). Từ
H kẻ
HM AC ⊥

và trên tia HM lấy điểm E sao cho HM = EM. Kẻ

HN AB ⊥

và trên tia

HN lấy điểm D sao cho NH = ND. Chứng minh rằng:
a/ Ba điểm D; A; E thẳng hàng
b/ BD // CE
c/ BC = BD + CE
Bài 5: Cho tam giác ABC vuông cân tại A, D là trung điểm của AC. Từ A kẻ đường
thẳng vuông góc với BD, cắt BC tại E. Chứng minh rằng: AE = 2DE.

0
1. Cho tam giác ABC vuông tại A. tia phân giác góc B cắt AC tại D. từ A kẻ AE vuông góc BD tại E và cắt BC tại MA. chứng minh tam giác ABC bằng tam giác MBEB. chứng minh DM vuông góc với BCC .Kẻ AH vuông góc với BC tại I. Chứng minh AM là tia phân giác của góc IACcâu 2: Cho tam giác ABC cân tại A (góc A bé hơn 90 độ). vẽ tia phân giác AD của góc A (D thuộc BC)A. chứng minh tam giác ABD bằng tam giác ACDB. Vẽ...
Đọc tiếp

1. Cho tam giác ABC vuông tại A. tia phân giác góc B cắt AC tại D. từ A kẻ AE vuông góc BD tại E và cắt BC tại M

A. chứng minh tam giác ABC bằng tam giác MBE

B. chứng minh DM vuông góc với BC

C .Kẻ AH vuông góc với BC tại I. Chứng minh AM là tia phân giác của góc IAC

câu 2: Cho tam giác ABC cân tại A (góc A bé hơn 90 độ). vẽ tia phân giác AD của góc A (D thuộc BC)

A. chứng minh tam giác ABD bằng tam giác ACD

B. Vẽ đường trung tuyến của tam giác ABC cắt cạnh AC tại G. chứng minh G là trọng tâm của tam giác ABC

C. Gọi H là trung điểm của cạnh DC. qua h Vẽ đường thẳng vuông góc với cạnh DC cắt cạnh AC tại E. Chứng minh tam giác DEC cân

D. Chứng minh ba điểm B, G, E thẳng hàng

Câu 3 Cho tam giác ABC vuông tại A. Vẽ trung tuyến AM của tam giác ABC, Kẻ MH vuông góc với AC. Trên tia đối của tia MH đặt điểm  K sao cho MK bằng MH

a. chứng minh tam giác MHC bằng tam giác MKB và BK vuông góc với KH

B. Chứng minh AB song song với HK và BK = AH.

C. Vẽ BH cắt AB tại g. Gọi I là trung điểm của AB. Chứng minh ba điểm C, G, I thẳng hàng

câu4 Cho tam giác ABC vuông tại A. gọi M là trung điểm cạnh BC. trên tia đối của tia MA lấy điểm D sao cho MD = MA.

A . chứng minh tam giác MCD bằng tam giác MBD và AC song song với BD

B. Gọi I là trung điểm AM, J là trung điểm BM. AJ cắt BI tại G. Chứng minh tam giác GAB là tam giác cân

Câu 5 cho tam giác ABC vuông tại A (AB bé hơn AC). vẽ BD là tia phân giác của góc ABC (D thuộc AC). trên đoạn BC lấy điểm E sao cho BE bằng BA

a chứng minh tam giác ABD bằng tam giác EBD .Từ đó suy ra góc BED là góc vuông

b.  tia ED  cắt tia BA tại EF. Chứng minh tam giác BED cân

C. Chứng minh tam giác AFC bằng tam giác  ECF

D.Chứng minh: AB + AC >DE+BC

câu 6: Cho tam giác ABC vuông tại A. Vẽ đường phân phân giác BD của tam giác ABC và E là hình chiếu của D trên BC

a. chứng minh tam giác ABD bằng tam giác EBD và AE vuông góc với BD

B. Gọi giao điểm của hai đường thẳng ED và BA là F. Chứng minh tam giác ABC bằng tam giác AFC 

C. Qua A vẽ đường thẳng vuông góc với BC cắt CF tại G. Chứng minh ba điểm B, D, G thẳng hàng

câu 7: Cho tam giác ABC cân tại A (góc A bé hơn 90 độ). vẽ AD là phân giác của góc A (D thuộc BC)

A . Chứng minh tam giác ABD bằng tam giác ACD

B. lấy H là trung điểm của AB. Trên tia đối của tia HC lấy điểm K sao cho HK = HC. Chứng minh rằng AK = BC

c. CH cắt AD tại G. Chứng minh (BA+BC)÷6 >GH

5
28 tháng 4 2019

bài 1 đề bài có sai ko?

29 tháng 4 2019

Đề đúng nha bạn

23 tháng 7 2020

A B C M E F

c, xét tg AEB và tg AFC có : AB = AC do tg ABC cân tại A (Gt)

^ABC = ^ACB do tg ABC cân tại A (gt)

CF = BE (gt)

=> tg AEB = tg AFC (c-g-c)                                         (1)

a, (1) => AF = AE

xét tg AFM và tg AEM có : AM chung

FM = ME do CM = BM; CF  = BE 

=> tg AFM = tg AEM (c-c-c)

b, tg AFM = tg AEM (Câu b)

=> ^AMF = ^AME 

mà ^AMF + ^AME = 180 (kề bù)

=> ^AME = 90

=> AM _|_ BC

d, có M là trđ tính đc MB

dùng pytago

23 tháng 7 2020

A B C M E F 1 2 1 2 2 1 1 2 3 4

GT : \(\Delta\)ABC cân tại A ; BM = CM = 1/2 BC; lấy \(E\in BM;F\in MC\)sao cho BE = CF 

KL :a)  \(\Delta\)AEM = \(\Delta\) AFM

b) \(AM\perp BC\)

c)  \(\Delta AEB=\Delta AFC\)

d) AB = 10 ; BC = 12 => AM = ... cm 

Bài làm

a) Ta có : BM = MC (gt)

BE = FC (gt)

=> BM - BE = MC - FC 

=> ME = MF

Xét tam giác ABM và tam giác ACM có 

+) BM = CM

+) AM chung               => \(\Delta ABM=\Delta ACM\)(C.C.C)

+) AB = AC                  => Góc M1 = Góc M2 (góc tương ứng)

                                         AE = AF(cạnh tương ứng)

Xét tam giác AEM và tam giác AFM có 

+) góc M1 = góc M2

+) AM chung                             => \(\Delta AEM=\Delta AFM\) (c.g.c)

+) ME = MF                               => Góc E2 = Góc F1

 b) Vì Góc M1 = Góc M2 (cmt)

mà Góc M1 + Góc M2 = 180o

=> Góc M1 = Góc M2 = 90o 

=> \(AM\perp BC\)

c) Vì Góc E2 = Góc F1 (câu a)

mà Góc E1 + Góc E2 = Góc F1 + Góc F2 (= 180o)

=> Góc E1 = Góc F2

Xét tam giác AEB và tam giác AFC có : 

+) BE = FC (gt)

+) Góc E1 = Góc F2 (cmt) => \(\Delta AEB=\Delta AFC\)(c.g.c)

+) AE = AF (câu a)

d) Vì Góc M1 = Góc M2 = 90o (câu b)

=> \(\Delta AMB\)vuông tại M

=> \(BM^2+AM^2=AB^2\)(ĐỊNH LÝ PYTAGO) (1)

Lại có BM = MC = 1/2 BC (gt)

=> BM = MC = 1/2 . 12 = 6 cm

Khi đó (1) <=> 62 + AM2 = 102

=> AM2 = 64

=> AM = 8 cm

11 tháng 2 2019

c, xét tam giác BEM và tam giác AFM có:

BE=AF(câu b)

BM=AM(do AM là trung tuyến của tam giác cân)

góc EBM =góc MAF(cùng phụ với góc ADM= góc BDE)

suy ra 2 tam giác trên bằng nhau

suy ra góc EMB= góc AMF( 2 góc tương ứng)

mặt khác: góc AMF+góc FMB=90 độ (câu a)

suy ra góc EMB+ góc FMB=90 độ

hay FM vuông góc với ME

hay tam giác EMF vuông tại M

 chị làm đó rồi nhé

11 tháng 2 2019

a, Xét tam giác AMB và tam giác AMC có:

AM chung

AB=AC(gt)

BM=CM(gt)

suy ra tam giác AMB= tam giác AMC(c.c.c)

suy ra góc AMB= góc AMC

suy ra góc AMB=góc AMC=180 độ/2=90 độ

hay AM vuông góc với BC