Cho x,y là 2 số nguyên thỏa mãn :
x+ 2019x2 = 2020y2 + y ; chứng minh rằng : x-y là số chính phương
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
`2019x^2+2020y^2-4038x+4040y+4039=0`
`<=>2019(x^2-2x+1)+2020(y^2+2y+1)=0`
`<=>2019(x-1)^2+2020(y+1)^2=0`
`<=>x=1,y=-1`
(2x - 3)2 + |y| = 1
\(\Rightarrow\left(2x-3\right)\le1\)
Do x nguyên nên (2x - 3)2 ϵ N mà (2x - 3)2 lẻ và \(0\le\left(2x-3\right)^2\le1\)
nên \(\begin{cases}\left|y\right|=0\\\left(2x-3\right)^2=1\end{cases}\)\(\Rightarrow\begin{cases}y=0\\2x-3\in\left\{1;-1\right\}\end{cases}\)\(\Rightarrow\begin{cases}y=0\\2x\in\left\{4;2\right\}\end{cases}\)\(\Rightarrow\begin{cases}y=0\\x\in\left\{2;1\right\}\end{cases}\)
Vậy có 2 cặp giá trị (x;y) thỏa mãn đề bài là (2;0) và (1;0)
Các cặp số nguyên x;y thỏa mãn là:
x | -5 | -4 | -3 | -2 | -1 | 0 | 1 | 2 | 3 | 4 | 5 |
y | 0 | -1 | -2 | -3 | -4 | -5 | 4 | 3 | 2 | 1 | 0 |
=> có 11 cặp, k chắc nữa
Ta thấy: \(2=0+2=2+0=1+1\)
Trường hợp 1:
Với \(|x|=0\)thì \(x=0\)
\(|y|=2\)thì \(y=-2\) hoặc \(2\)
=> Với trường hợp 1 thì có hai cặp 9 x, y ) thỏa mãn là:
\(x=0;y=-2\)và \(x=0;y=2\)
Trường hợp 2:
Với \(|x|=2\)thì \(x=-2\)hoặc \(2\)
\(|y|=0\)thì \(y=0\)
=> Với trường hợp 2 thì có cặp ( x , y ) thỏa mãn là:
\(x=-2;y=0\)và \(x=2;y=0\)
Trường hợp 3:
Với \(|x|=1\)thì \(x=-1\)hoặc \(1\)
\(|y|=1\)thì \(y=-1\)hoặc \(1\)
=> Với trường hợp 3 thì có 4 cặp ( x , y ) thỏa mãn là:
\(x=1;y=-1\)
\(x=-1;y=1\)
\(x=1;y=-1\)
\(x=1;y=1\)
Vậy qua 3 trường hợp thì có \(4+2+2=8\)cặp ( x , y ) thỏa mãn yêu cầu của đề bài
Vì x,y nguyên mà |x| + |y| = 2
<= > x , y \(\le\) 2
TH1: |x| = 0 ; |y| = 2 => có 2 trường hợp
TH2: |x| = 1 ; |y| = 1 => có 4 trường hợp
TH3: |x| = 2 ; |y| = 0 => Có 2 trường hợp
Vậy có tất cả: 2 + 4 + 2= 8 trường hợp
TH1 : x = 1 và y = 2
TH2 : x = -1 và y = -1
TH3 : x = -2 hoặc 2 và y = 0
TH4 : x= 0 và y = -2 hoặc 2
**** đúng nha
Đặt x - y = t
\(x=y+t\)
\(x^2=\left(y+t\right)^2=\left(y+t\right)\left(y+t\right)=y^2+2yt+t^2\)
Thay vào ta có :
\(y+t+2019 \left(y^2+2yt+t^2\right)=2020y^2+y\)
\(t+4038yt+2019t^2=y^2\)
\(t+2019.2020t^2=\left(y-2019t\right)^2\)
\(t\left(1+2019.2020t\right)=\left(y-2019t\right)^2\)
\(\Rightarrow\)t là số chính phương do t và 1 + 2019.2020t là hai số nguyên tố cùng nhau.