cho f(x)=\(\frac{100^x}{100^x+10}\)
tính tổng 2004 số hạng \(f\left(\frac{1}{2015}\right)\)+\(f\left(\frac{2}{2015}\right)+...+f\left(\frac{2014}{2015}\right)\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
câu 1: \(=\left(x^2+3x+1-1\right)\left(x^2+3x+1+1\right)=\left(x^2+3x\right)\left(x^2+3x+2\right)=x\left(x+3\right)\left(x+1\right)\left(x+2\right)\)
mình chỉ làm đc câu 1 thôi. hì hì ^^ cũng cho đúng nha :)
+) Nhận xét: Nếu a + b = 1 thì f(a) +f(b) = 1. Thật vậy:
Ta có: f(a) + f(b) = \(\frac{100^a}{100^a+10}+\frac{100^b}{100^b+10}=\frac{100^{a+b}+10.100^a+100^{b+a}+10.100^b}{\left(100^a+10\right)\left(100^b+10\right)}\)
\(=\frac{100^1+10.\left(100^a+100^b\right)+100^1}{100^{a+b}+10.\left(100^a+100^b\right)+100}=\frac{200+10.\left(100^a+100^b\right)}{200+10.\left(100^a+100^b\right)}=1\)
+) Áp dụng:
\(f\left(\frac{1}{2015}\right)\) + \(f\left(\frac{2}{2015}\right)\)+ \(f\left(\frac{3}{2015}\right)\)+ ... + \(f\left(\frac{2014}{2015}\right)\)
= \(\left[f\left(\frac{1}{2015}\right)+f\left(\frac{2014}{2015}\right)\right]+\left[f\left(\frac{2}{2015}\right)+f\left(\frac{2013}{2015}\right)\right]+...+\left[f\left(\frac{1007}{2015}\right)+f\left(\frac{1008}{2015}\right)\right]\)
= 1 + 1 + ...+ 1 (có 2014 : 2 = 1007 số 1)
= 1007
Ta có:
f(x)=\(\frac{x^2}{2x-2x^2-1}=\frac{x^2}{-\left(x-1\right)^2-x^2}\)
tiếp tục giờ ta tìm f(1-x) mục đích của việc này là để ghép cặp vì bạn để ý ghép sao cho tổng của tử bằng mẫu. Vây f(1-x)=\(\frac{\left(x-1\right)^2}{-x^2-\left(x-1\right)^2}\)
từ đây suy ra f(x)+f(1-x)= -1( bạn cũng xem lại đề cho mình nha tử là x^2 chứ không phải là 1 )
Giờ ta ghép cặp như sau: ta loại trừ f(\(\frac{1008}{2016}\)) và f(1) ra 1 ở đây mình rút gọn 2016/2016. 2 số này sẽ dùng để thay vào tính: Còn các số còn lại sẽ được ghép làm 1007 cặp mà mỗi cặp bằng -1 do cmt. vậy mình gọi cái cần tính là A thì
=> A=-1.1007-1-0,5=-1008,5
Bạn xem lại hộ xem thử đề đúng không nhé b. Sao không thấy có cơ sở để tính tổng này??
\(f\left(x\right)+f\left(1-x\right)=\frac{100^x}{100^x+100}+\frac{100^{1-x}}{100^{1-x}+100}\)
Nhân cả tử và mẫu của \(\frac{100^{1-x}}{100^{1-x}+100}\) với \(100^x\) ta được:
\(f\left(x\right)+f\left(1-x\right)=\frac{100^x}{100^x+100}+\frac{100}{100+100^x}=\frac{100^x+100}{100^x+100}=1\)
Vậy: \(S=f\left(\frac{1}{2009}\right)+f\left(\frac{2008}{2009}\right)+f\left(\frac{2}{2009}\right)+f\left(\frac{2007}{2009}\right)+...+f\left(\frac{1004}{2009}\right)+f\left(\frac{1005}{2009}\right)\)
\(S=1+1+1+...+1\) (có \(\frac{2008-1+1}{2}=1004\) số 1)
\(S=1004\)