K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 1 2017

cứ cái nào BP cho =0 => x^2=0=> x=0

Vậy GTNN A=-1 khi x=0

9 tháng 10 2017

A=2(x-\(\frac{1}{2}\)x -\(\frac{1}{2}\))

=2(x2 - 2.\(\frac{1}{4}\)x + \(\frac{1}{16}\)\(\frac{9}{16}\))

=2(x - \(\frac{1}{4}\))2 - \(\frac{9}{8}\). Vì 2(x - \(\frac{1}{4}\))2 lớn hơn hoặc bằng 0

=> 2(x - \(\frac{1}{4}\))2 - \(\frac{9}{8}\)lớn hơn hoặc bằng  - \(\frac{9}{8}\)

Vậy GTNN của a là - \(\frac{9}{8}\) khi x - \(\frac{1}{4}\)= 0 => x = \(\frac{1}{4}\)

a: Sửa đề: AD=6cm

BC=AD=6cm

CD=AB=8cm

BD=căn 6^2+8^2=10cm

Xét ΔBCD vuông tại C có sin DBC=DC/BD=8/10=4/5

nên góc DBC=53 độ

=>góc BDC=37 độ

b: CH=6*8/10=4,8cm

BH=BC^2/BD=6^2/10=3,6cm

 

4 tháng 7 2023

Sao lại sửa đề ạ?

17 tháng 12 2016

         Vì ABCD là hình thoi => AB = AD.                                                                                                                                                  Xét tam giác ABD  có AB = AD => Tam giác ABD cân tại A. Mà có góc A bằng 600  => Tam giác ABD đều.                                            Xét tam giác đều ABD có BH là đường cao ( vì BD vuông góc với AD ) => BH cũng là đường trung tuyến của tam giác ABD (t/c)                                                                                                                    =>  H là trung điểm của AD  (đpcm)                                                                                                Vậy, H là trung điểm của AD                                                                                                                                                                          

4 tháng 10 2016

Mình cũng chưa làm được bài 3. Cậu làm được, chỉ mình với nhé!

a: BD=căn 8^2+6^2=10cm

Xét ΔBCD vuông tại C có sin DBC=CD/BD=3/5

=>góc DBC=37 độ

=>góc BDC=53 độ

b: CH=8*6/10=4,8cm

BH=BC^2/BD=64/10=6,4cm

 

Câu 3 : Chỉ là kẻ BD, CM ko thôi sao? thế thì M và D nằm đâu trên 2 cạnh AB và AC cũng đc? Như thế sẽ ko làm được bạn nhé
Câu 5 : 
\(2\left(y^2+yz+z^2\right)+3x^2=36\)

\(\Leftrightarrow2y^2+2yz+2z^2+3x^2=36\)

\(\Leftrightarrow2y^2+2yz+2z^2+3x^2+2xy+2zx=36+2xy+2zx\)

\(\Leftrightarrow\left(x^2+y^2+z^2+2xy+2yz+2zx\right)+\left(x^2-2xy+y^2\right)+\left(x^2-2zx+z^2\right)=36\)

\(\Leftrightarrow\left(x+y+z\right)^2+\left(x-y\right)^2+\left(x-z\right)^2=36\)

\(\Leftrightarrow\left(x+y+z\right)^2=36-\left(x-y\right)^2-\left(x-z\right)^2\le36\)

\(\Leftrightarrow-6\le x+y+z\le6\)
_Minh ngụy_