Cho tam giác ABC , C=90 độ, từ trung điểm K của BC kẻ KI vuông góc với AB.
CMR: AI2-BI2=BC2
vẽ hộ hình luôn nha
CẢM ƠN
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét ΔAKB và ΔAKC có:
AB=AC(gt)
AK:cạnh chung
BK=CK(gt)
=> ΔAKB=ΔAKC(c.c.c)
=> \(\widehat{AKB}=\widehat{AKC}\)
Mà: \(\widehat{AKB}+\widehat{AKC}=180^o\)
=> \(\widehat{AKB}=\widehat{AKC}=90^o\)
=> \(AK\perp BC\)
b) Vì: \(EC\perp BC\left(gt\right)\)
Mad: \(AK\perp BC\left(cmt\right)\)
=> EC//AK
Xét tam giác BKI vuông tại I có:
\(BK^2=KI^2+BI^2\left(Pytago\right)\Rightarrow BI^2=BK^2-KI^2\left(1\right)\)
Xét tam giác AIK vuông tại I có:
\(AK^2=AI^2+IK^2\left(Pytago\right)\Rightarrow AI^2=AK^2-IK^2\left(2\right)\)
Xét tam giác ACK vuông tại C có:
\(AK^2=AC^2+CK^2\left(Pytago\right)\Rightarrow AC^2=AK^2-CK^2\left(3\right)\)
\(\left(1\right),\left(2\right)\Rightarrow AI^2-BI^2=\left(AK^2-IK^2\right)-\left(BK^2-IK^2\right)=AK^2-BK^2\)
Mà \(BK=CK\Rightarrow BK^2=CK^2\) (do K là trung điểm BC)
\(\Rightarrow AI^2-BI^2=AK^2-CK^2=AC^2\)(do (3))
Giải:
Làm phiền bạn tự vẽ hình ạ. :(((
a) Ta có: tam giác ABC vuông tại A (gt)
=> Góc ABC + góc ACB = 90o (định lí)
=> Góc ABC = 90o - góc ACB = 90o - 40o = 50o
Vậy góc ACB = 50o.
b) Vì M là trung điểm của BC (gt)
nên BM = CM
Xét tam giác ABM và tam giác CEM có:
BM = CM (chứng minh trên)
Góc AMB = góc CME (2 góc đối đỉnh)
AM = EM (gt)
=> Tam giác ABM = tam giác ECM (c.g.c) (đpcm)
c) Ta có: tam giác ABM = tam giác ECM (chứng minh trên)
=> Góc BAM = góc CEM (2 góc tương ứng)
Mà 2 góc này ở vị trí so le trong
=> AB // CE (dấu hiệu nhận biết)
Lại có: AE // d (gt), EK _|_ d tại K (gt)
=> EK _|_ AE tại E
=> Góc AEK = 90o
hay góc AEC + góc CEK = 90o
Xét tam giác ABC và tam giác ACE có:
AB = CE (vì tam giác ABC = tam giác ECM)
Góc BAC = góc ACE (= 90o)
AC là cạnh chung
=> Tam giác ABC = tam giác CEA (c.g.c)
=> Góc ABC = góc AEC (2 góc tương ứng)
Mà góc AEC + góc CEK = 90o (chứng minh trên)
góc ABC + góc ACB = 90o (chứng minh trên)
=> Góc CEK = góc ACB (đpcm)
Bạn vẽ hình ra nhé!
Do tam giác ABD vuông cân tại A => góc DAM + góc BAH = 90º. Trong tam giác vuông ABH có góc ABH + góc BAH = 90º => góc DAM = góc ABH (cùng phụ với một góc bằng nhau)
Xét tam giác vuông ADM và tam giác vuông BAH có:
AD = AB (gt)
góc DAM = góc ABH (cmt)
=> tam giác ADM = tam giác BAH (cạnh huyền - góc nhọn)
=> DM = AH
Cmtt ta có: tam giác ANE = tam giác CHA => EN = AH
=> DM = EN (cùng bằng AH)
Lại có: DM // EN (cùng _|_ AH) mà DM = EN (cmt) => tứ giác DMEN là hình bình hành => MN cắt DE tại trung điểm mỗi đường hay MN đi qua trung điểm của DE.
Chúc bạn học giỏi!
tk mk nha bạn
thank you bạn
(^_^)