cho tam giác nhọn ABC, cho góc BAC=600 .CMR :BC2 =AB2 +AC2 - AB.AC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Kẻ đường cao BH
Xét tam giác ABH vuông tại H có ∠(BAC) = 60 0
BH = AB.sin A = AB.sin 60 0 = (AB 3 )/2
AH = AB.cos A = AB.cos 60 0 = AB/2
Xét tam giác BHC vuông tại H có:
B C 2 = B H 2 + H C 2 = B H 2 + A C - A H 2
= B H 2 + A C 2 - 2 A C . A H + A H 2
Vậy được điều phải chứng minh.
Kẻ đường cao BH của tam giác ABC thì H nằm trên tia AC (để ∠ (BAC) = 60 ° là góc nhọn), do đó H C 2 = A C - A H 2 (xem h.bs.8a, 8b)
Công thức Py-ta-go cho ta
B C 2 = B H 2 + H C 2 = B H 2 + A C - A H 2 = B H 2 + A C 2 + A H 2 - 2 A C . A H = A B 2 + A C 2 - 2 A C . A H
Do ∠ (BAC) = 60 ° nên AH = AB.cos 60 ° = AB/2, suy ra B C 2 = A B 2 + A C 2 - A B . A C
-Kẻ đường phân giác AD của △ABC.
-Có: \(\widehat{ADC}=\widehat{BAD}+\widehat{ABD}\) (\(\widehat{ADC}\) là góc ngoài của △ABD)
\(\widehat{BAC}=\widehat{BAD}+\widehat{CAD}\)
Mà \(\widehat{ABD}=\widehat{CAD}\left(=\dfrac{1}{2}\widehat{BAC}\right)\)
\(\Rightarrow\widehat{ADC}=\widehat{BAC}\)
-Xét △ADC và △BAC có:
\(\widehat{ADC}=\widehat{BAC}\left(cmt\right)\)
\(\widehat{ACB}\) là góc chung.
\(\Rightarrow\)△ADC∼△BAC (g-g).
\(\Rightarrow\dfrac{DC}{AC}=\dfrac{AC}{BC}\)(tỉ số đồng dạng)
-Xét △ABC có: AD là phân giác (gt)
\(\Rightarrow\dfrac{BD}{CD}=\dfrac{AB}{AC}\) (định lí đường phân giác của tam giác)
\(\Rightarrow\dfrac{BD}{AB}=\dfrac{CD}{AC}=\dfrac{BD+CD}{AB+AC}=\dfrac{BC}{AB+AC}\)
\(\Rightarrow CD=\dfrac{BC.AC}{AB+AC}\)
Mà \(\dfrac{DC}{AC}=\dfrac{AC}{BC}\left(cmt\right)\)
\(\Rightarrow\dfrac{\dfrac{BC.AC}{AB+AC}}{AC}=\dfrac{AC}{BC}\)
\(\Rightarrow\dfrac{BC}{AB+AC}=\dfrac{AC}{BC}\)
\(\Rightarrow\left(AB+AC\right).AC=BC^2\)
\(\Rightarrow AC^2+AB.AC=BC^2\)
Câu 20: Tam giác ABC vuông tại B suy ra:
A. AC2 = AB2 + BC2 B. AC2 = AB2 - BC2
C. BC2 = AB2 + AC2 D. AB2 = BC2 + AC2
Câu 21: Tam giác ABC có BC = 5cm; AC = 12cm; AB = 13cm. Tam giác ABC vuông tại đâu?
A. Tại B B. Tại C
C. Tại A D. Không phải là tam giác vuông
Câu 22: Cho ABC có = 900 ; AB = 4,5 cm ; BC = 7,5 cm. Độ dài cạnh AC là:
A. 6,5 cm B. 5,5 cm C. 6 cm D. 6,2 cm
Câu 23: Tam giác nào là tam giác vuông trong các tam giác có độ dài các cạnh là:
A. 3cm, 4dm, 5cm. B. 5cm, 14cm, 12cm.
C. 5cm, 5cm, 8cm. D. 9cm, 15cm, 12cm.
Câu 24: Cho ABC có AB = AC và = 600, khi đó tam giác ABC là:
A. Tam giác vuông B. Tam giác cân
C. Tam giác đều D. Tam giác vuông cân
Câu 25: Nếu A là góc ở đáy của một tam giác cân thì:
A. ∠A ≤ 900 B. ∠A > 900 C. ∠A < 900 D. ∠A = 900
a, Sử dụng định lí Pytago cho các tam giác vuông HAB và HAC để có đpcm
b, 1. Chứng minh tương tự câu a)
2. Sử dụng định lí Pytago cho tam giác vuông AHM
Tham Khảo e nhá chj ngu ném ko bik làm☹
https://hoc24.vn/cau-hoi/cho-tam-giac-abc-m-la-trung-diem-bc-chung-minh-ab2-ac2-2am2-bc22.249563555147
Kẻ AH vuông góc BC.
Xét tam giác AHM vuông tại H (^AHM = 900) có:
AM2 = AH2 + HM2 (định lý Pytago).
Xét tam giác AHB vuông tại H (^AHB = 900) có:
AB2 = AH2 + BH2 (định lý Pytago).
Xét tam giác AHC vuông tại H (^AHC = 900) có:
AC2 = AH2 + CH2 (định lý Pytago).
Ta có: BH = BM - HM.
CH = CM + HM.
Vì M là trung điểm của BC (gt) => BM = CM; BM = \(\dfrac{BC}{2}\) => BM2 = \(\dfrac{BC^2}{4}\).
Ta có: AB2 + AC2 = AH2 + BH2 + AH2 + CH2.
AB2 + AC2 = AH2 + AH2 + BH2 + CH2.
= 2AH2 + (BM - HM)2 + (CM + HM)2.
= 2AH2 + BM2 - 2BM.HM + HM2 + CM2 + 2CM.HM + HM2.
= 2AH2 + BM2 - 2BM.HM + HM2 + BM2 + 2BM.HM + HM2.
= 2AH2 + 2HM2 + 2BM2.
= 2(AH2 + HM2) + 2\(\dfrac{BC^2}{4}\).
AB2 + AC2 = 2AM2 + \(\dfrac{BC^2}{2}\) (đpcm).
rất hân hạnh làm quen you!(^^)
vẽ ch vuông với ab
tam giác hac vuông tại h,có góc a=60độ nên là nửa tam giác đều
nên AH=AC/2
DO ĐÓ HB=AB-AH=AB-AC/2(1)
TAM GIÁC HAC CÓ GÓC H =90 ĐỘ ,NÊN
AC^2=AH^2+HC^2,NÊN HC^2=AC^2-(AC/2)^2=3AC^2/4(2)
TAM GIÁC HBC VUÔNG TẠI,NÊN
BC^2=HB^2+HC^2
TỪ (1)VÀ (2),TA CÓ
BC^2=(AB-AC/2)^2+3AC^2/4=(AB-AC/2)(AB-AC/2)=3AC^2/4
=AB(AB-AC/2)-AC/2(AB-AC/2)+3AC^2/4
=(AB^2-AB*AC+AC^2/4)+3AC^2/4
=AB^2+AC^2-AB*AC
XONG RỒI ĐÓ.GIÚP TUI CÁI COI!
TUI MỚI ĐK NÊN K.O BIẾT LÀM SAO VÀO THU TOÁN 7