K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 1 2017

\(x^2-xy+y^2=3\)

\(\Leftrightarrow2x^2-2xy+2y^2=6\)

\(\Leftrightarrow\left(x-y\right)^2+x^2+y^2=1+1+4\)

\(\Rightarrow\left(\left(x-y\right)^2,x^2,y^2\right)=\left(1,1,4;1,4,1;4,1,1\right)\)

\(\Rightarrow\left(x,y\right)=\left(-1,-2;1,2;2,1;-2,-1;-1,1;1,-1\right)\)

16 tháng 8 2018

bạn làm đc câu e chưa

16 tháng 8 2018

bạn lm đc phần e r thì giải ra hộ mik với

19 tháng 3 2018

\(\left\{{}\begin{matrix}x^2+y^2+xy+1=4y\left(1\right)\\y\left(x+y\right)=2x^2+7y+2\left(2\right)\end{matrix}\right.\)

\(\left(2\right)\Leftrightarrow xy+y^2=2x^2+7y+2\left(3\right)\)

Thay \(\left(3\right)\) vào \(\left(1\right)\) ta có: \(\left(1\right)\Leftrightarrow x^2+2x^2+7y+2+1-4y=0\\ \Leftrightarrow x^2+y+1=0\\ \Leftrightarrow x^2+1=-y\)

Thay \(\left(4\right)\) vào \(\left(1\right)\): \(y^2+xy-5y=0\Leftrightarrow y\left(y+x-5\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}y=0\\y=5-x\end{matrix}\right.\)

Với y=0 thì \(x^2+1=0\) vô nghiệm

Với y=5-x thì \(x^2+1=x-5\Leftrightarrow x^2-x+6\) vô nghiệm

Vậy hpt vô nghiệm