K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔACD và ΔBDC có

AC=BD

AD=BC

CD chung

Do đó: ΔACD=ΔBDC

Suy ra: \(\widehat{ACD}=\widehat{BDC}\)

hay \(\widehat{ODC}=\widehat{OCD}\)

Xét ΔOCD có \(\widehat{ODC}=\widehat{OCD}\)

nên ΔOCD cân tại O

Suy ra: OC=OD

Ta có: OC+OA=AC

OB+OD=BD

mà AC=BD

và OC=OD

nên OA=OB

17 tháng 9

10 năm r

a) Xét ∆ACD và ∆BDC ta có :

DC chung

BC = AD (ABCD là hình thang cân )

ADC = BCD ( ABCD là hình thang cân)

=> ∆ACD = ∆BDC (c.g.c)

=> BDC = ACD (tg ứng) 

=> ∆DOC cân tại O

=> OC = OD

Mà AB//DC 

ABO = ODC ( so le trong) 

BAO = OCN (so le trong) 

Mà BDC = ACD (cmt)

=> OAB = ABO 

=> ∆AOB cân tại O 

=> OA = OB 

b) Xét ∆OND và ∆ONC ta có 

OC = OD (cmt)

ODC = ONC (cmt)

ON chung 

=> ∆OND = ∆ONC (c.g.c) 

=> DN = NC(1)

Mà OND + ONC = 180 độ( kề bù) 

Mà OND = ONC = 180/2 = 90 độ

=> ON vuông góc với AC(2)

Từ (1) và (2) ta có ∆ cân AOB có trung trực OM đồng thời có trung tuyến OM (3)

Chứng minh tương tự ta có :

∆OMA = ∆OMB 

=> AM = MB(4)

=> OMB + OMA = 180 độ(kề bù )

=> OMB = OMA = 180/2 = 90 độ

=> OM vuông góc với AB(5)

Từ (4) và(5) ta có :∆ cân DOC có trung trực ON đồng thời là trung tuyến ON (6)

Từ (3) và (5) => M , O , N thẳng hàng

25 tháng 4 2018

a) ABCD là hình thang nên AB//CD

CD=2AB ==>AB/CD=1/2

AB//CD, áp dụng định lý Ta-let, ta có

OA/OC=OB/OD=AB/CD=1/2

=>OA/OC=1/2 => OC=2OA

B) Ta có : OA/OC=OB/OD=AB/CD=1/2

==> OD/OB = 2 ==>OD = 2OB

*xét: OC/AC = 2OA/(OA + OC) = 2OA/(OA + 2OA) = 2OA/3OA = 2/3(1);

OD/BD = 2OB/(OD + OB) = 2OB/(2OB + OB) = 2/3(2)
*từ (1),(2) =>OC/AC = OD/BD = 2/3
=>O là trọng tâm tam giác FCD

c)

Vì một đường thẳng song song với AB và CD lần lượt cắt các đoạn thẳng AD, BD,AC và BC tại M, I,K và N nên KN//AB ,IM//AB và IN//AB

MI//AB, áp dụng hệ quả của định lý Ta-let, ta có

MI/AB = DM/AD = DI/IB (1)

IN//AB, áp dụng định lý Ta-let, ta có

CN/BC=DI/IB (2)

Từ (1) và (2), ta có

DM/AD=CN/BC

d)

KN//AB, áp dụng hệ quả của định lý Ta-let, ta có

KN/AB=CN/BC

Ta có :KN/AB=CN/BC và MI/AB=DM/AD

mà DM/AD=CN/BC nên KN/AB=MI/AB => KN=MI

a) Vì ABCD là hình thang cân 

=> AD = BC

=> ADC = BCD 

=> AC = BD 

=> DAB = CBA 

Xét ∆ADC và ∆BCD ta có : 

AD = BC 

ADC = BCD 

DC chung 

=> ∆ADC = ∆BCD (c.g.c)

=> BDC = ACD ( tương ứng) 

=> ∆DOC cân tại O.

b) Mà DAB + BAE = 180° ( kề bù) 

ABC + ABE = 180° ( kề bù )

Mà DAB = CBA 

=> EAB = EBA 

=> ∆EAB cân tại E 

Gọi giao điểm AB và EO là H

EO và DC là G

Mà AB//CD 

=> BAC = ACD ( so le trong) 

=> ABD = ACD ( so le trong) 

Mà ACD = BDC 

=> CAB = ABD 

=> ∆ABO cân tại O 

=> EO là trung trực và là phân giác ∆AOB 

=> AOH = BOH ( phân giác )

Mà AOH = COG ( đối đỉnh) 

BOH = DOG ( đối đỉnh) 

Mà AOH = BOH ( EO là phân giác) 

=> OG là phân giác DOC 

Mà ∆DOC cân tại O

=> OG là trung trực DC

Hay EO là trung trực DC