Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Sin3x - sinx=0
\(sin3x=sinx\)
\(\Leftrightarrow\left[{}\begin{matrix}3x=x+k2\pi\\3x=\pi-x+k2\pi\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=k\pi\\x=\dfrac{\pi}{4}+\dfrac{k\pi}{2}\end{matrix}\right.\)
\(\sin3x-\sin x=0\)
\(\Leftrightarrow\sin3x=\sin x\)
\(\Leftrightarrow\left[{}\begin{matrix}2x=k2\pi\\4x=\pi+k2\pi\end{matrix}\right.\)
\(sin3x=sinx\)
\(\Leftrightarrow\left[{}\begin{matrix}3x=x+k2\pi\\3x=\pi-x+k2\pi\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=k\pi\\x=\dfrac{\pi}{4}+\dfrac{k\pi}{2}\end{matrix}\right.\)
\(\sin3x-\sin x=0\)
\(\Leftrightarrow\sin3x=\sin x\)
\(\Leftrightarrow\left[{}\begin{matrix}3x=x+k2\pi\\3x=\pi-x+k2\pi\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}2x=k2\pi\\4x=\pi+k2\pi\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=k\pi\\x=\dfrac{\pi}{4}+\dfrac{k\pi}{2}\end{matrix}\right.\)