Tìm x thuộc z , biết:
a) (x-2)100=(x-2)3
b) x2< 8x
Nhanhhh ạk !
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
a. Áp dụng TCDTSBN:
\(\frac{x}{y}=\frac{2}{5}\Rightarrow \frac{x}{2}=\frac{y}{5}=\frac{2x}{4}=\frac{y}{5}=\frac{2x-y}{4-5}=\frac{3}{-1}=-3\)
$\Rightarrow x=-3.2=-6; y=-3.5=-15$
b. Áp dụng TCDTSBN:
$\frac{x}{2}=\frac{y}{3}; \frac{y}{4}=\frac{z}{7}$
$\Rightarrow \frac{x}{8}=\frac{y}{12}=\frac{z}{21}$
$=\frac{2x}{16}=\frac{y}{12}=\frac{z}{21}=\frac{2x-y+z}{16-12+21}=\frac{50}{25}=2$
$\Rightarrow x=8.2=16; y=2.12=24; z=2.21=42$
c.
$\frac{x}{2}=\frac{y}{3}=\frac{z}{4}$
$\Rightarrow \frac{x^2}{4}=\frac{y^2}{9}=\frac{z^2}{16}=\frac{2z^2}{32}$
$=\frac{x^2-y^2+2z^2}{4-9+32}=\frac{108}{27}=4$
$\Rightarrow x^2=4.4=16; y^2=9.4=36; z^2=4.4=16$
Kết hợp với đkxđ suy ra:
$(x,y,z)=(4,6,4); (-4; -6; -4)$
a) \(\left(x-1\right)^3\)
\(=x^3-3x^2+3x-1\)
b) \(\left(2x-3y\right)^3\)
\(=\left(2x\right)^3-3\left(2x\right)^23y+3.2x\left(3y\right)^3+\left(3y\right)^3\)
\(=8x^3-36x^2y+54xy^2-27y^3\)
Bài 3:
a: Ta có: \(\left(x-2\right)^3-x^2\left(x-6\right)=5\)
\(\Leftrightarrow x^3-6x^2+12x-8-x^3+6x^2=5\)
\(\Leftrightarrow12x=13\)
hay \(x=\dfrac{13}{12}\)
b: Ta có: \(\left(x-1\right)\left(x^2+x+1\right)-x\left(x+2\right)\left(x-2\right)=4\)
\(\Leftrightarrow x^3-1-x^3+4x=4\)
\(\Leftrightarrow4x=5\)
hay \(x=\dfrac{5}{4}\)
a) Đặt: \(A=1+2^2+2^3+...+2^{10}\)
\(\Rightarrow2A=2\left(1+2^2+2^3+...+2^9+2^{10}\right)\)
\(\Rightarrow2A=2+2^3+2^4+...+2^{10}+2^{11}\)
\(\Rightarrow2A-A=\left(2+2^3+2^4+...+2^{10}+2^{11}\right)-\left(1+2^2+2^3+...+2^{10}\right)\)
\(\Rightarrow A=\left(2^3-2^3\right)+\left(2^4-2^4\right)+...+\left(2-1\right)+\left(2^{11}-2^2\right)\)
\(\Rightarrow A=0+0+...+1+\left(2^{11}-2^2\right)\)
\(\Rightarrow A=1+2^{11}-2^2=1+2048-4=2045\)
Vậy: \(1+2^2+2^3+...+2^{10}=2045\)
b)
a] \(60-3\left(x-1\right)=2^3\cdot3\)
\(\Rightarrow60-3\left(x-1\right)=24\)
\(\Rightarrow3\left(x-1\right)=36\)
\(\Rightarrow x-1=12\)
\(\Rightarrow x=13\)
b] \(\left(3x-2\right)^3=2\cdot2^5\)
\(\Rightarrow\left(3x-2\right)^3=2^6\)
\(\Rightarrow\left(3x-2\right)^3=\left(2^2\right)^3\)
\(\Rightarrow3x-2=2^2\)
\(\Rightarrow3x=6\)
\(x=2\)
c] \(5^{x+1}-5^x=500\)
\(\Rightarrow5^x\left(5-1\right)=500\)
\(\Rightarrow5^x\cdot4=500\)
\(\Rightarrow5^x=125\)
\(\Rightarrow5^x=5^3\)
\(\Rightarrow x=3\)
d] \(x^2=x^4\)
\(\Rightarrow x=x^2\)
\(\Rightarrow x-x^2=0\)
\(\Rightarrow x\left(1-x\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\1-x=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x=1\end{matrix}\right.\)
a) \(x\left(x-6\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x-6=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x=6\end{matrix}\right.\)
b) \(\left(-7-x\right)\left(-x+5\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}-7-x=0\\-x+5=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=-7\\x=-5\end{matrix}\right.\)
c) \(\left(x+3\right)\left(x-7\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x+3=0\\x-7=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=-3\\x=7\end{matrix}\right.\)
d) \(\left(x-3\right)\left(x^2+12\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x-3=0\\x^2+12=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=3\\x^2=-12\text{(vô lý)}\end{matrix}\right.\)
\(\Rightarrow x=3\)
e) \(\left(x+1\right)\left(2-x\right)\ge0\)
\(\Rightarrow\left[{}\begin{matrix}\left[{}\begin{matrix}x+1\ge0\\2-x\ge0\end{matrix}\right.\\\left[{}\begin{matrix}x+1\le0\\2-x\le0\end{matrix}\right.\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}\left[{}\begin{matrix}x\ge-1\\x\le2\end{matrix}\right.\\\left[{}\begin{matrix}x\le-1\\x\ge2\end{matrix}\right.\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}-1\le x\le2\\x\in\varnothing\end{matrix}\right.\)
\(\Rightarrow-1\le x\le2\)
f) \(\left(x-3\right)\left(x-5\right)\le0\)
\(\Rightarrow\left[{}\begin{matrix}\left[{}\begin{matrix}x-3\le0\\x-5\ge0\end{matrix}\right.\\\left[{}\begin{matrix}x-3\ge0\\x-5\le0\end{matrix}\right.\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}\left[{}\begin{matrix}x\le3\\x\ge5\end{matrix}\right.\\\left[{}\begin{matrix}x\ge3\\x\le5\end{matrix}\right.\end{matrix}\right.\)
\(\Rightarrow3\le x\le5\)
a) =>\(\left[{}\begin{matrix}x=0\\x-6=0\end{matrix}\right.=>\left[{}\begin{matrix}x=0\\x=6\end{matrix}\right.\)
b => \(\left[{}\begin{matrix}-7-x=0\\-x+5=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=-7\\x=5\end{matrix}\right.\)
d) => \(\left[{}\begin{matrix}x-3=0\\x^2+12=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=3\\x^2=-12\end{matrix}\right.\)(vô lí) => x=3
a)
\(x+\left(x+2\right)+\left(x+4\right)+...+\left(x+98\right)=0\)
\(x+x+2+x+4+...+x+98=0\)
\(50x+\left(98+2\right).\left[\left(98-2\right):2+1\right]:2=0\)
\(50x+100.49:2=0\)
\(50x+49.50=0\)
\(50x=0-49.50\)
\(50x=-2450\)
\(x=-2450:50\)
\(x=-49\)
b)
\(\left(x-5\right)+\left(x-4\right)+\left(x-3\right)+...+\left(x+11\right)+\left(x+12\right)=99\)
\(x+x+x+...+x-5-4-3-...+11+12=99\)
\(18x+6+7\text{+ 8 + 9 + 10 + 11 + 12 = 99}\)
\(18x+63=99\)
\(18x=99-63\)
\(18x=36\)
\(x=36:18\)
\(x=2\)
a) \(\sqrt{x}< 3\)<=> x<9
b)\(\sqrt{4-x}\) ≤ 2 <=> 4 - x ≤ 4 <=> x≥0
c)\(\sqrt{x+2}=\sqrt{4-x}\) <=> x+2=4-x <=>2x=2<=>x=1
Vậy x=1
d)\(\sqrt{x^2-1}\)=x-1 <=> x\(^2\)-1=x\(^2\)-2x+1 <=> x\(^2\)-\(x^2\)-2x+1+1=0 <=> 2x=2 <=> x=1
Vậy x=1
a)(x-2)100=(x-2)3
=>x-2\(\in\left\{-1;1;0\right\}\)
b)x2<8x
x.x<8x
=>x<8
a) x=2 là nghiệm
nếu x khác 2 chia hai vế cho (x-2)^3
<=> \(\left(x-2\right)^{100-3}=1\Rightarrow x-2=1\Rightarrow x=3\)
b) 0<x<8