phân tích đa thức thành nhân tử
x^7+x^3+1
ai giải được thưởng 15k
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
x2 - axy - bxy + aby2
= ( x2 - axy) - ( bxy - aby2)
= x( x-ay) - by( x - ay)
= ( x-ay)( x - by)
Bạn chuyển tất cả hạng tử từ vế phải sang vế trái ta được
\(^{x^2+5\text{x}^3+x^2y=5\text{x}^3+x^2y}\)
\(x^2+5\text{x}^3+x^2y-5\text{x}^3-x^2y=0\)
Rút gọn ta được
\(x^2=0\)
\(=>x=0\)
tick cho mình nha
\(\left(x-5\right)\left(x-1\right)\left(x+3\right)\left(x+7\right)+60\)
\(=\left(x^2+2x-35\right)\left(x^2+2x-3\right)+60\)
\(=\left(x^2+2x\right)^2-38\left(x^2+2x\right)+105+60\)
\(=\left(x^2+2x\right)^2-3\left(x^2+2x\right)-35\left(x^2+2x\right)+165\)
\(=\left(x^2+2x-3\right)\left(x^2+2x-35\right)\)
\(=\left(x+3\right)\left(x-1\right)\left(x+7\right)\left(x-5\right)\)
Ta có : x8 + x + 1
= x8 + x7 - x7 - x6 + x6 + x5 - x5 - x4 + x4 + x3 - x3 - x2 + x2 - x - 1 + x + 1 + x + 1
= (x8 + x7) - (x7 + x6) + (x6 + x5) - (x5 + x4) + (x4 + x3) - (x3 + x2) + (x2 + x) + (x + 1)
= x7(x + 1) - x6(x + 1) + x5(x + 1) - x4(x + 1) + x3(x + 1) - x2(x + 1) + x(x + 1) + (x + 1)
= (x + 1)(x7 - x6 + x5 - x4 + x3 - x2 + x + 1)
(mk ko chắc lắm)
\(x^4-x^3-x+1=\left(x^4-x^3\right)-\left(x-1\right)=x^3\left(x-1\right)-\left(x-1\right)=\left(x^3-1\right)\left(x-1\right)=\left(x-1\right)^2.\left(x^2+x+1\right)\)
x4 - x3 - x + 1
= (x4 - x3) - (x - 1)
= x3(x - 1) - (x - 1)
= (x3 - 1)(x - 1)