( 1 + 5 + 5^2 + ....+ 5^2011 ) I x - 1 I = ( 5^2012 - 1 )
Giải chi tiết hộ mình nha
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1. 2X-(-8)=-4-(55:53)
<=> 2X+8=-4-52
<=>2X+8=-29
<=>2X=-37
=> x=-18,5
2.
2012.2013-1/20122011
=2012.2013/20122011-1/20122011
=2013/20122010-1/20122011
khó wá
Ta có : 1 x 2 x 3 x ..... x 2012 x 2013 - 1 x 3 x 5 x ..... x 2011 x 2013
= (1 x 3 x 5 x ..... x 2013) x (2 x 4 x 6 x ..... x 2012) - 1 x 3 x 5 x ..... x 2011 x 2013
= (1 x 3 x 5 x ..... x 2011 x 2013) x (2 x 4 x 6 x ..... x 2012 - 1)
\(3x\left(2x+1\right)=0\)
\(\Rightarrow\orbr{\begin{cases}2x+1=0\\3x=0\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}2x=-1\\x=0\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=-\frac{1}{2}\\x=0\end{cases}}\)
\(\frac{\frac{6}{5}+\frac{6}{35}-\frac{6}{125}-\frac{6}{2009}-\frac{6}{2011}}{\frac{7}{5}+\frac{7}{35}-\frac{7}{125}-\frac{7}{2009}-\frac{7}{2011}}\)
\(=\frac{6.(\frac{1}{5}+\frac{1}{35}-\frac{1}{125}-\frac{1}{2009}-\frac{1}{2011})}{7.(\frac{1}{5}+\frac{1}{35}-\frac{1}{125}-\frac{1}{2009}-\frac{1}{2011})}\)
\(=\frac{6}{7}\)
Tìm x
\(a,3x(2x+1)=0\)
\(\Rightarrow\hept{\begin{cases}3x=0\\2x+1=0\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x=0\\x=\frac{-1}{2}\end{cases}}\)
Vậy \(x=0\)hoặc \(x=\frac{-1}{2}\)
\(b.\frac{2}{3}-\frac{1}{3}(x-\frac{3}{2})-\frac{1}{2}(2x+1)=5\)
\(\frac{2}{3}-\frac{1}{3}x+\frac{1}{2}-x-\frac{1}{2}=5\)
\(\frac{2}{3}+\frac{1}{2}-\frac{1}{2}-x(\frac{1}{3}+1)=5\)
\(\frac{4}{3}x=\frac{2}{3}-5\)
\(\frac{4}{3}x=\frac{-13}{3}\)
\(x=\frac{-13}{3}\div\frac{4}{3}\)
\(x=\frac{-13}{4}\)
Chúc ban học tốt
Đặt phân thức trên là D
=> D=(1+1+1+1+...+1+2013/2+2012/3+...+2/2013+1/2014)/(1/2+1/3+1/4+...+1/2014)
=> D=(1+2013/2+1+2012/3+1+2011/4+...+1+2/2013+1+1/2014+1)/(1/2+1/3+1/4+1/5+...+1/2014)
=> D=(2015/2+2015/3+2015/4+...+2015/2013+2015/2014+1)/(1/2+1/3+1/4+...+1/2014)
=> D=[2015*(1/2+1/3+1/4+1/5+....+1/2014)]/(1/2+1/3+1/4+1/5+...+1/2014)
=> D=2015
Với bài này, ta phải chia trường hợp để phá ngoặc. VD để |x-1| = x-1 thì x-1 phải lớn hơn hoặc bằng 0, hay x lớn hơn hoặc bằng 1 là 1 trường hợp. Còn nếu x nhỏ hơn 1 thì |x-1| = -(x-1)
TH1: \(x< 1\), ta có :
\(-\left(x-1\right)+\left[-\left(x-5\right)\right]=4\)
\(1-x+5-x=4\)
\(6-2x=4\)
\(x=\frac{6-4}{2}=1\)( Không thỏa mãn x < 1 )
TH2 \(1\le x\le5;\)ta có :
\(\left(x-1\right)+\left[-\left(x-5\right)\right]=4\)
\(\Rightarrow x-1+5-x=4\)
\(4=4\)( Thỏa mãn )
Do đó với \(1\le x\le5;\) thì đẳng thức luôn thỏa mãn
TH3 : \(x>5;\)có :
\(x-1+x-5=4\)
\(2x-6=4\)
\(x=\frac{6+4}{2}=5\)(Không thỏa mãn )
Vậy \(1\le x\le5.\)
ĐKXĐ: \(\left\{{}\begin{matrix}x+1\ge0\\x-2>0\\x+2>0\\x\ge0\end{matrix}\right.\) và \(4-x\ne0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ge-1\\x>2\\x>-2\\x\ge0\end{matrix}\right.\) và \(x\ne4\)
\(\Leftrightarrow\left\{{}\begin{matrix}x>2\\x\ne4\end{matrix}\right.\)
Đặt 1 + 5 + 5^2 + ... + 5^2012 = A
Ta có : A = 1 + 5 + 5^2 + ... + 5^2012
5A = 5 + 5^2 + ... + 5^2012
5A - A = 4A = ( 5 + 5^2 + ... + 5^2013 ) - ( 1 + 5 + 562 + ... + 5^2012 )
4A = 5^2012 - 1
A = ( 5^2012 - 1 ) / 4
\(\Rightarrow\) ( 5^2012 - 1 ) / 4 | x - 1 | = ( 5^2012 - 1 )
\(\Rightarrow\) | x - 1 | = ( 5^2012 - 1 ) : mở ngoặc vuông rồi ( 5^2012 - 1 ) / 4 đóng ngoặc vuông lại ( sorry, mình không biết ngoặc vuông đâu )
\(\Rightarrow\) | x - 1 | = 4
\(\Rightarrow\)hoặc | x - 1 | = 4 \(\Rightarrow\)x = 3
hoặc | x - 1 | = -4 \(\Rightarrow\)x = -3
Vậy x = 3 hoặc -3
K MÌNH NHÉ
( 1 + 5 + 5^2 + ....+ 5^2011 ) I x - 1 I = ( 5^2012 - 1 ) (1)
Đặt A= 1 + 5 + 5^2 + ....+ 5^2011
=>5A= 5 + 5^2 + ....+ 5^2011 + 5^2012
=>5A-A = ( 5 + 5^2 + ....+ 5^2011 + 5^2012) - ( 1 + 5 + 5^2 + ....+ 5^2011) = 5^2012 - 1
=> 4A = 5^2012 - 1 => A = (5^2012 - 1)/4 (2)
(1)(2) => (5^2012 -1)/4.I x - 1 I = 5^2012 -1 => (5^2012 - 1)I x - 1 I=4(5^2012 - 1) => I x - 1 I=4
\(\Rightarrow\orbr{\begin{cases}x-1=4\\x-1=-4\end{cases}}\Rightarrow\orbr{\begin{cases}x=5\\x=-3\end{cases}}\)