\(\dfrac{\sqrt{x+1}}{\sqrt{x-2}}\)\(+\dfrac{2\sqrt{x}}{\sqrt{x+2}}\)...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 7 2021

ĐKXĐ: \(\left\{{}\begin{matrix}x+1\ge0\\x-2>0\\x+2>0\\x\ge0\end{matrix}\right.\)  và \(4-x\ne0\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\ge-1\\x>2\\x>-2\\x\ge0\end{matrix}\right.\) và \(x\ne4\)

\(\Leftrightarrow\left\{{}\begin{matrix}x>2\\x\ne4\end{matrix}\right.\)

a: \(A=\left(\dfrac{\sqrt{3}\left(x-\sqrt{3}\right)+3}{\left(x-\sqrt{3}\right)\left(x^2+x\sqrt{3}+3\right)}\right)\cdot\dfrac{x^2+3+x\sqrt{3}}{x\sqrt{3}}\)

\(=\dfrac{x\sqrt{3}}{\left(x-\sqrt{3}\right)\left(x^2+x\sqrt{3}+3\right)}\cdot\dfrac{x^2+x\sqrt{3}+3}{x\sqrt{3}}\)

\(=\dfrac{1}{x-\sqrt{3}}\)

b: \(B=\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}{x+\sqrt{x}+1}-\dfrac{\sqrt{x}\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}{x-\sqrt{x}+1}+x+1\)

\(=x-\sqrt{x}-x-\sqrt{x}+x+1\)

\(=x-2\sqrt{x}+1\)

c: \(C=\left(\dfrac{\sqrt{x}+2}{\left(\sqrt{x}+1\right)^2}-\dfrac{\sqrt{x}-2}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\right)\cdot\dfrac{x\left(\sqrt{x}+1\right)-\left(\sqrt{x}+1\right)}{\sqrt{x}}\)

\(=\dfrac{x+\sqrt{x}-2-\left(x-\sqrt{x}-2\right)}{\left(\sqrt{x}+1\right)^2\cdot\left(\sqrt{x}-1\right)}\cdot\dfrac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)^2}{\sqrt{x}}\)

\(=\dfrac{2\sqrt{x}}{\sqrt{x}}=2\)

10 tháng 8 2018

a,Điều kiện:x\(\ge\)0;x\(\ne\)1

=\(\dfrac{1+\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-1\right)}\)\(\times\)\(\dfrac{\left(\sqrt{x}-1\right)^2}{\sqrt{x}+1}\)

=\(\dfrac{\sqrt{x}-1_{ }}{\sqrt{x}}\)

b,<=>\(\dfrac{\sqrt{x}_{ }-1}{\sqrt{x}}\)=\(\dfrac{1}{3}\)

<=>3\(\sqrt{x}\)-3=\(\sqrt{x}\)

<=>2\(\sqrt{x}\)=3

<=>x=9/4

22 tháng 7 2018

\(1a.A=\left(\dfrac{1}{\sqrt{x}-3}-\dfrac{1}{\sqrt{x}+3}\right):\dfrac{3}{\sqrt{x}-3}=\dfrac{6}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}.\dfrac{\sqrt{x}-3}{3}=\dfrac{2}{\sqrt{x}+3}\) ( x ≥ 0 ; x # 9 )

\(b.A>\dfrac{1}{3}\)\(\dfrac{2}{\sqrt{x}+3}>\dfrac{1}{3}\text{⇔}\dfrac{3-\sqrt{x}}{3\left(\sqrt{x}+3\right)}>0\)

\(3-\sqrt{x}>0\)

\(x< 9\)

Kết hợp ĐKXĐ , ta có : \(0\text{≤}x< 9\)
\(c.\) Tìm GTLN chứ ?

\(A=\dfrac{2}{\sqrt{x}+3}\text{≤}\dfrac{2}{3}\)

\(A_{MAX}=\dfrac{2}{3}."="x=0\left(TM\right)\)

22 tháng 7 2018

\(a.VT=2\sqrt{2}\left(\sqrt{3}-2\right)+\left(1+2\sqrt{2}\right)^2-2\sqrt{6}=2\sqrt{6}-4\sqrt{2}+9+4\sqrt{2}-2\sqrt{6}=9=VP\)Vậy , đẳng thức được chứng minh .

\(b.VT=\sqrt{2+\sqrt{3}}+\sqrt{2-\sqrt{3}}=\dfrac{\sqrt{3+2\sqrt{3}+1}+\sqrt{3-2\sqrt{3}+1}}{\sqrt{2}}=\dfrac{\sqrt{3}+1+\sqrt{3}-1}{\sqrt{2}}=\dfrac{2\sqrt{3}}{\sqrt{2}}=\sqrt{6}=VP\)Vậy , đẳng thức được chứng minh .

\(c.VT=\sqrt{\dfrac{4}{\left(2-\sqrt{5}\right)^2}}-\sqrt{\dfrac{4}{\left(2+\sqrt{5}\right)^2}}=\dfrac{2}{\sqrt{5}-2}-\dfrac{2}{\sqrt{5}+2}=\dfrac{2\left(\sqrt{5}+2\right)-2\left(\sqrt{5}-2\right)}{5-4}=8=VP\)Vậy , đẳng thức được chứng minh .

31 tháng 5 2017

sửa đề:

\(M=\left(\dfrac{2}{\sqrt{x}-1}+\dfrac{\sqrt{x}}{\sqrt{x}+1}\right).\dfrac{\sqrt{x}}{x+\sqrt{x}+2}\)

ĐKXĐ: \(x\ge0\);\(x\ne\pm1\)

\(M=\left(\dfrac{2}{\sqrt{x}-1}+\dfrac{\sqrt{x}}{\sqrt{x}+1}\right).\dfrac{\sqrt{x}}{x+\sqrt{x}+2}\\M=\left[\dfrac{2\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}+\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\right].\dfrac{\sqrt{x}}{x+\sqrt{x}+2} \)
\(M=\dfrac{x+\sqrt{x}+2}{x-1}.\dfrac{\sqrt{x}}{x+\sqrt{x}+2}=\dfrac{\sqrt{x}}{x-1}\)
14 tháng 1 2024

chi tiết chứ

15 tháng 7 2018

1) Đk: \(x\ge4\)

\(\dfrac{\sqrt{x^2-16}}{\sqrt{x-3}}+\sqrt{x-3}=\dfrac{7}{\sqrt{x-3}}\)

\(\Leftrightarrow\dfrac{\sqrt{x^2-16}}{\sqrt{x-3}}+\dfrac{x-3}{\sqrt{x-3}}=\dfrac{7}{\sqrt{x-3}}\)

\(\Leftrightarrow\dfrac{\sqrt{x^2-16}+x-10}{\sqrt{x-3}}=0\)

\(\Leftrightarrow\sqrt{x^2-16}+x-10=0\)

\(\Leftrightarrow\sqrt{x^2-16}=10-x\)

\(\Leftrightarrow\left\{{}\begin{matrix}x^2-16=100-20x+x^2\\x\le10\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}20x=116\\x\le10\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{29}{5}\left(N\right)\\x\le10\end{matrix}\right.\)

Kl: x= 29/5

2) Đk: \(x\ge-1\)

\(x^2-5x+14=4\sqrt{x+1}\)

\(\Leftrightarrow x^4+25x^2+196-10x^3-140x+28x^2=16x+16\)

\(\Leftrightarrow x^4-10x^3+53x^2-156x+180=0\)

\(\Leftrightarrow\left(x-3\right)\left(x^3-7x^2+32x-60\right)=0\)

\(\Leftrightarrow\left(x-3\right)^2\left(x^2-4x+20\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-3=0\\x^2-4x+20=0\left(vn\right)\end{matrix}\right.\)

\(\Leftrightarrow x=3\left(N\right)\)

Kl: x=3

15 tháng 7 2018

cảm ơn nhìu

31 tháng 5 2017

ĐKXĐ: \(x>0,x\ne4\)

B= \(\left(x-\sqrt{x}-2\right).\left(\dfrac{3}{\sqrt{x}-2}-\dfrac{4-\sqrt{x}}{x-2\sqrt{x}}\right)\)

= \(\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right).\dfrac{3\sqrt{x}-4+\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-2\right)}\)

= \(\dfrac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)4\left(\sqrt{x}-1\right)}{\sqrt{x}\left(\sqrt{x}-2\right)}\)

= \(\dfrac{4\left(x-1\right)}{\sqrt{x}}\)

28 tháng 6 2017

đề sai rồi bạn sửa lại đi rồi mình giúp

28 tháng 6 2017

sai ở đâu v bn