K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 7 2015

Gọi 3 số nguyên liên tiếp là n-1; n; n+1

Tổng bình phương của chúng là: A = (n-1)2 + n2 + (n+1) 2 = 3n2 + 2

Suy ra A chia 3 dư 2.

Xét bình phương của một số n.

+Nếu n = 3k thì n2 = 3k2   ->   chia hết cho 3
+Nếu n = 3k+1 thì n2 = (3k+1)2 = 9k2 + 6k + 1 = 3(3k2+2k) + 1    ->  chia 3 dư 1
+Nếu n = 3k+2 thì n2 = (3k+2)2 = 9k2 + 6k + 4 = 3(3k2+2k+1) + 1   ->  chia 3 dư 1 

Vậy một số chính phương chia 3 dư 1 hoặc không dư.

Mà A chia 3 dư 2 => A không phải là số chính phương.

 

6 tháng 7 2015

Gọi 3 số nguyên liên tiếp là n-1; n; n+1

Tổng bình phương của chúng là: \(A=\left(n-1\right)^2+n^2+\left(n+1\right)^2=3n^3+2\)

Suy ra A chia 3 dư 2.

Xét bình phương của một số n.

+Nếu n = 3k thì n2 = 3k2   ->   chia hết cho 3
+Nếu n = 3k+1 thì n2 = (3k+1)2 = 9k2 + 6k + 1 = 3(3k2+2k) + 1    ->  chia 3 dư 1
+Nếu n = 3k+2 thì n2 = (3k+2)2 = 9k2 + 6k + 4 = 3(3k2+2k+1) + 1   ->  chia 3 dư 1 

Vậy một số chính phương chia 3 chỉ dư 1 hoặc không dư.

Mà A chia 3 dư 2 => A không phải là số chính phương.

10 tháng 3 2022

Gọi 5 số tự nhiên liên tiếp là n- 2; n - 1; n ; n + 1; n + 2

Ta có : (n-2)2 + (n-1)2 + n2 + (n+1)2 + (n +2)2 =  (n2 - 4n + 4) + (n2 - 2n + 1) + n2 + (n2 + 2n + 1)+( n2 + 4n + 4) = 5n2 + 10 = 5.(n+ 2)

 Ta có 5. (n2 + 2) chia hết cho 5 nhưng không chia hết cho 25 

vì n2 + 2 không chia hết cho 5 (do n2 có thể  tận cùng là 0;1;4;5;6;9 )

=> 5.(n+ 2) không là số chính phương => đpcm

16 tháng 8 2015

Gọi 5 số  đó là : a- 2 ; a - 1 ; a ; a + 1 ; a + 2

Tổng Bình phương 5 số là :

     ( a - 2 )^ 2 + ( a- 1 )^2+ a^2 + ( a+ 1 )^2 + ( a+ 2 )^2 

=> a^2 - 4a + 4 + a^2 - 2a + 1 + a^2 + a^2 + 2a + 1 + a^2 + 4a + 4 

= 5a^2 + 10 

= 5 ( a^ 2 + 2 ) chia hết cho 5  (1)

Nhưng 5 ( a^2 + 2 ) không chia hết cho 25 (2)

Từ (1) và (2) => Tổng bình phương 5 số ko là số chính phương 

Gọi 5 STN liên tiếp là n−2;n−1;n;n+1;n+2

Ta có A=(n−2)2+(n−1)2+n2+(n+1)2+(n+2)2

=5n2+10=5(n2+2)

n2 không tận cùng là 3;8=>n2+2 không tận cùng là 5 hoặc 0=>n2+2 không chia hết cho 5

=>5(n2+2) không chia hết cho 25=> A không phải SCP

25 tháng 2 2018

Óc Chó Là Có Thật

25 tháng 2 2018

Gọi 5 số tự nhiên liên tiếp đó là n - 2 ; n - 1 ; n ; n + 1 ; n + 2 ( n thuộc N , n > 2 )

Ta có : \(\left(n-2\right)^2+\left(n-1\right)^2+n^2+\left(n+1\right)^2+\left(n+2\right)^2=5.\left(n^2+n\right)\)

Vì \(n^2\)không thể tận cùng là 3 hoặc 8 nên \(n^2+2\)không chia hết cho 5

\(\Rightarrow\)\(5.\left(n^2+2\right)\)không là số chính phương hay tổng các bình phương của 5 số tự nhiên liên tiếp không phải là 1 số chính phương ( đpcm )

28 tháng 3 2016

gọi 5 số tự nhiên đó lần lượt là n-2;n-1;n;n+1;n+2

Ta có:

(*) (n-2)2=n(n-2)-2(n-2)=n2-4n+4 (1)

(*)(n-1)2=n(n-1)-1(n-1)=n2-2n+1  (2)

(*)n2=n2                                    (3)

(*)(n+1)2=n(n+1)+1(n+1)=n2+2n+1(4)

(*)(n+2)2=n(n+2)+2(n+2)=n2+4n+4  (5)

Cộng liên tiếp (1);(2);(3);(4);(5)

pt<=>n2-4n+4+n2-2n+1+n2+n2+2n+1+n2+4n+4

=(n2+n2+n2+n2+n2)+(-4n-2n+2n+4n)+(4+1+1+4)

=5n2+10=5(n2+2) chia hết cho 5 nhưng ko chia hết cho 25

=>n2+n ko chia hết cho 5

=>đpcm

28 tháng 3 2016

ta có: n^2 + (n-1)^2 +(n+1)^2 +(n-2)^2 +(n+2)^2 
= n^2 + n^2 - 2n +1+ n^2 +2n+1 +n^2 - 4n+4+ n^2 +4n+4 
= 5n^2 +10 không phải số chính phương