1)Với giá trị nào của x thuộc Z : N^2 +N+18 là 1 số nguyên
2) Tìm các giá tri của a thuộc Z : a^3+2a^2-5a-6=0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Để A nguyên => 3 chia hết n-1
=> n-1 thuộc Ư(3)={-1;1;-3;3}
=>n={0;2;-3;4}
a) Vì \(\frac{3}{n-1}\) là 1 số nguyên => 3 chia hết cho n-1 \(\Rightarrow n-1\inƯ\left(3\right)=\left\{1;3;-1;-3\right\}\)
Ta có bảng sau:
n-1 | 1 | 3 | -1 | -3 |
n | 2 | 4 | 0 | -2 |
Vậy n={2;4;0;-2}
b) Vì \(\frac{x-2}{x+3}\) là số nguyên => (x+3)-5 chia hết cho (x+3)
Mà (x+3) chia hết cho (x+3) \(\Rightarrow5\) chia hết cho (x+3)\(\Rightarrow\left(x+3\right)\inƯ\left(5\right)=\left\{1;5;-1;-5\right\}\)
Ta có bảng sau:
x+3 | 1 | 5 | -5 | -1 |
x | -2 | 2 | -8 | -4 |
Vậy x={-2;2;-8;-4}
a) với mọi \(n\in Z\) khác 2 thì A là phân số
b)
\(\frac{2n+2}{2n-4}=\frac{2n-4+6}{2n-4}=\frac{2n-4}{2n-4}+\frac{6}{2n-4}\)
\(=1+\frac{6}{2n-4}\)
Để A là số nguyên thì 6 phải chia hết cho 2n - 4
\(\Rightarrow2n-4\inƯ\left(6\right)\Leftrightarrow2n-4\in\left\{-6;-3;-2;-1;1;2;3;6\right\}\)
\(\Leftrightarrow n\in\left\{-1;\frac{1}{2};1;\frac{3}{2};\frac{5}{2};3;\frac{7}{2};5\right\}\)mà \(n\in Z\)nên \(n\in\left\{-1;1;3;5\right\}\)
Giải câu b trước nha.
b) Ta có: A = 2n+2/2n = 2n/2n + 2/2n = 1 + 1/n
Có 1 là số nguyên => Để A là số nguyên thì 1/n là số nguyên
=> n = {-1;1}
Vậy n=1 hoặc n=-1 thì A là số nguyên.
a) Để A là phân số thì n khác 1 và -1 ( theo câu b )