cho hình thang ABCD (AB//CD)
a)CMR các trung điểm hai đáy va giao điểm của hai đường chéo là 3 điểm thẳng hàng (làm rồi nha!!!)
b)đường thẳng song song với hai đáy đi qua giao điểm ) cắt hai cạnh bên AD,BC lần lượt tại E,F.CM o là trung điểm EF
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét tam giác ABD có:
AB//IE (gt)
=>\(\dfrac{IE}{AB}=\dfrac{DI}{BD}\)(định lí Ta-let). (1)
Xét tam giác ABI có:
AB//DC (gt)
=>\(\dfrac{DI}{BD}=\dfrac{CI}{AC}\)(định lí Ta-let) (2)
Xét tam giác ABC có:
IF//AB (gt)
=>\(\dfrac{IF}{AB}=\dfrac{CI}{AC}\)(định lí Ta-let) (3)
- Từ (1),(2),(3) suy ra \(\dfrac{EI}{AB}=\dfrac{IF}{AB}\)=>EI=IF
Ta có: \(\dfrac{IE}{AB}=\dfrac{DI}{BD}\)(cmt) =>\(\dfrac{AB}{IE}=\dfrac{BD}{DI}\)=>\(\dfrac{AB}{IE}-1=\dfrac{BI}{DI}\)(4)
Xét tam giác ABI có:
AB//DC (gt)
=>\(\dfrac{BI}{DI}=\dfrac{AB}{DC}\)(định lí Ta-let) (5)
- Từ (4) và (5) suy ra: \(\dfrac{AB}{IE}-1=\dfrac{AB}{DC}\)
=>\(\dfrac{AB}{IE}=\dfrac{DC+AB}{DC}\)
=>IE=IF=\(\dfrac{AB.DC}{AB+DC}=\dfrac{4.5}{9}=\dfrac{20}{9}\left(cm\right)\)
1.
+) Tứ giác ABCD kà hình thang cân => góc ADC = BCD và AD = BC
=> tam giác ODC cân tại O => OD = OC
mà AD = BC => OA = OB
+) tam giác ODB và OCA có: OD = OC; góc DOC chung ; OB = OA
=> Tam giác ODB = OCA (c - g - c)
=> góc ODB = OCA mà góc ODC = OCD => góc ODC - ODB = OCD - OCA
=> góc EDC = ECD => tam giác EDC cân tại E => ED = EC (2)
Từ (1)(2) => OE là đường trung trực của CD
=> OE vuông góc CD mà CD // AB => OE vuông góc với AB
Tam giác OAB cân tại O có OE là đường cao nên đồng thời là đường trung trực
vậy OE là đường trung trực của AB