So sánh:
A = \(\frac{2011^{2012}+1}{2011^{2013}+1}\)với B = \(\frac{2011^{2013}+1}{2011^{2014}+1}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Sửa lại:
Ta có:
\(2011A=\frac{2011^{2013}+2011}{2011^{2013}+1}=1+\frac{2010}{2011^{2013}+1}\)
\(2011B=\frac{2011^{2014}+2011}{2011^{2014}+1}=1+\frac{2010}{2011^{2014}+1}\)
Vì \(1+\frac{2010}{2011^{2013}+1}>1+\frac{2010}{2011^{2014}+1}\) nên 2011A > 2011 B
Từ đó A > B
Vậy A > B
Có:
\(2009A=\frac{2011^{2013}+2011}{2011^{2013}+1}=1+\frac{2010}{2011^{2013}+1}\)
\(2011B=\frac{2011^{2014}+2011}{2011^{2014}+1}=1+\frac{2010}{2011^{2014}+1}\)
Mà \(1+\frac{2010}{2011^{2013}+1}>1+\frac{2010}{2011^{2014}+1}\)
\(\Rightarrow2009A>2009B\)
\(\Rightarrow A>B\)
Vậy A > B
$\frac{\frac{2010}{2011}}{\frac{2012}{2013}}+\frac{\frac{2011}{2012}}{\frac{2013}{2014}}+\frac{\frac{2012}{2013}}{\frac{2014}{2015}}$
$\frac{\frac{2010}{2011}}{\frac{2012}{2013}}+\frac{\frac{2011}{2012}}{\frac{2013}{2014}}+\frac{\frac{2012}{2013}}{\frac{2014}{2015}}$
$\frac{\frac{2010+2011+2012}{2011+2012+2013}}{\frac{2012+2013+2014}{2013+2014+2015}}$
$\frac{\frac{2010}{2011}+\frac{2011}{2012}+\frac{2012}{2013}}{\frac{2012+2013+2014}{2013+2014+2015}}$
$\frac{\frac{2010+2011+2012}{2011+2012+2013}}{\frac{2012}{2013}+\frac{2013}{2014}+\frac{2014}{2015}}$
D=\(\frac{2011^{2013}+1}{2011^{2014}+1}\)
<\(\frac{2011^{2013}+1+2010}{2011^{2014}+1+2010}\)
<\(\frac{2011^{2013}+2011}{2011^{2014}+2011}\)
<\(\frac{2011\left(2011^{2012}+1\right)}{2011\left(2011^{2013}+1\right)}\)
<\(\frac{2011^{2012}+1}{2011^{2013}+1}\)
<C
Vậy C>D
\(\frac{2014}{2013}+\frac{2013}{2012}+\frac{2012}{2011}+\frac{2011}{2014}\)
\(=1+\frac{1}{2013}+1+\frac{1}{2012}+1+\frac{1}{2011}+1-\frac{3}{2014}\)
\(=4+\left(\frac{1}{2013}+\frac{1}{2012}+\frac{1}{2011}-\frac{1}{2014}-\frac{1}{2014}-\frac{1}{2014}\right)\)
Ta có:
\(\frac{1}{2011}>\frac{1}{2014}\Rightarrow\frac{1}{2011}-\frac{1}{2014}>0\)
\(\frac{1}{2012}>\frac{1}{2014}\Rightarrow\frac{1}{2012}-\frac{1}{2014}>0\)
\(\frac{1}{2013}>\frac{1}{2014}\Rightarrow\frac{1}{2013}-\frac{1}{2014}>0\)
\(\Rightarrow\frac{1}{2011}-\frac{1}{2014}+\frac{1}{2012}-\frac{1}{2014}+\frac{1}{2013}-\frac{1}{2014}>0\)
\(\Rightarrow4+\left(\frac{1}{2013}+\frac{1}{2012}+\frac{1}{2011}-\frac{1}{2014}-\frac{1}{2014}-\frac{1}{2014}\right)>4\)( thêm 2 vế với 4 )
\(\Rightarrow\frac{2014}{2013}+\frac{2013}{2012}+\frac{2012}{2011}+\frac{2011}{2014}>4\)
Vậy \(\frac{2014}{2013}+\frac{2013}{2012}+\frac{2012}{2011}+\frac{2011}{2014}>4\)
Tham khảo nhé~
Ta có: \(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{2010^2}<\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{2009.2010}\)
\(<1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{2009}-\frac{1}{2010}\)
\(<1-\frac{1}{2010}\)
\(<\frac{2009}{2010}<1\)
=>N<1