Tính nhanh
\(\dfrac{8}{1\times3}+\dfrac{8}{3\times5}+\dfrac{8}{5\times7}+..............+\dfrac{8}{99\times101}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Có: A=\(\dfrac{3}{1.5}+\dfrac{3}{5.10}+...+\dfrac{3}{100.105}\)
=> A=\(3.\dfrac{5}{5}\left(\dfrac{1}{1.5}+\dfrac{1}{5.10}+...+\dfrac{1}{100.105}\right)\)
=> A= \(3.\dfrac{1}{5}\left(\dfrac{5}{1.5}+\dfrac{5}{5.10}+...+\dfrac{5}{100.105}\right)\)
=> A=\(\dfrac{3}{5}\left(1-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{10}+...+\dfrac{1}{100}-\dfrac{1}{105}\right)\)
=> A= \(\dfrac{3}{5}\left(1-\dfrac{1}{105}\right)\)=\(\dfrac{3}{5}.\dfrac{104}{105}=\dfrac{312}{525}\)
Ta có:
\(A=\frac{3}{1\cdot5}+\frac{3}{5\cdot10}+...+\frac{3}{100\cdot105}\)
\(=\frac{3}{5}\cdot\left(\frac{5}{1\cdot5}+\frac{5}{5\cdot10}+...+\frac{5}{100\cdot105}\right)\)
\(=\frac{3}{5}\cdot\left(1-\frac{1}{5}+\frac{1}{5}-\frac{1}{10}+...+\frac{1}{100}-\frac{1}{105}\right)\)
\(=\frac{3}{5}\left(1-\frac{1}{105}\right)=\frac{3}{5}\cdot\frac{104}{105}=\frac{312}{525}\)
a) \(\dfrac{30\times25\times7\times8}{75\times8\times12\times14}=\dfrac{3\times2\times5\times25\times7\times8}{25\times3\times8\times3\times4\times2\times7}=\dfrac{5}{3\times4}=\dfrac{5}{12}\)
b) \(\dfrac{8\times3\times4}{16\times3}=\dfrac{8\times3\times2\times2}{8\times2\times3}=2\)
c) \(\dfrac{4\times5\times6}{3\times10\times8}=\dfrac{4\times5\times3\times2}{3\times5\times2\times4\times2}=\dfrac{1}{2}\)
S = 1.3 + 3.5 + 5.7 + ...+ 99.101
=>6S = 1.3.6 + 3.5.6 + 5.7.6 + ...+ 99.101.6
6S = 1.3.(5+1) + 3.5.(7-1) + 5.7.(9-3) + ...+ 99.101.(103-97)
6S = 1.3.5 + 1.3 + 3.5.7 - 1.3.5 + 5.7.9 - 3.5.7 + ...+ 99.101.103 - 97.99.101
6S = 1.3 + 99.101.103
S = 171 650
S = 1.3 + 3.5 + 5.7 + ...+ 99.101
=>6S = 1.3.6 + 3.5.6 + 5.7.6 + ...+ 99.101.6
6S = 1.3.(5+1) + 3.5.(7-1) + 5.7.(9-3) + ...+ 99.101.(103-97)
6S = 1.3.5 + 1.3 + 3.5.7 - 1.3.5 + 5.7.9 - 3.5.7 + ...+ 99.101.103 - 97.99.101
6S = 1.3 + 99.101.103
S = 171 650
\(A=\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{9}+...+\dfrac{1}{197}-\dfrac{1}{199}\)
\(A=\dfrac{1}{3}-\dfrac{1}{199}\)
\(A=\dfrac{199}{597}-\dfrac{3}{597}=\dfrac{196}{597}\)
\(A=\dfrac{2}{3.5}+\dfrac{2}{5.7}+\dfrac{2}{7.9}+...+\dfrac{2}{197.199}\)
\(A=\dfrac{5-3}{3.5}+\dfrac{7-5}{5.7}+\dfrac{9-7}{7.9}+...+\dfrac{199-197}{197.199}\)
\(A=\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{9}+...+\dfrac{1}{197}-\dfrac{1}{199}\)
\(A=\dfrac{1}{3}-\dfrac{1}{999}\)
\(A=\dfrac{196}{697}\)
\(B=1+2+4+8+16+...+512+1024\)
\(2B=2+4+8+32+...+1024+2048\)
\(B=\left(2+4+8+...+2048\right)-\left(1+2+4+...+1024\right)\)
\(B=2048-1\)
\(B=2047\)
\(\dfrac{10}{11}:\left(\dfrac{2}{3\times5}+\dfrac{2}{5\times7}+\dfrac{2}{7\times9}+\dfrac{2}{9\times11}\right)\)
\(=\dfrac{10}{11}:\left(\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{11}\right)\)
\(=\dfrac{10}{11}:\left(\dfrac{1}{3}-\dfrac{1}{11}\right)\)
\(=\dfrac{10}{11}:\dfrac{8}{33}\)
\(=\dfrac{10}{11}\times\dfrac{33}{8}\)
\(=5\times\dfrac{3}{4}\)
\(=\dfrac{15}{4}\)
a) \(\dfrac{2}{5}=\dfrac{2\times3}{5\times3}=\dfrac{6}{15}=\dfrac{2}{5}\)
\(\dfrac{4}{7}=\dfrac{4\times2}{7\times2}=\dfrac{8}{14}=\dfrac{4}{7}\)
\(\dfrac{13}{54}=\dfrac{13\times3}{54\times3}=\dfrac{39}{162}=\dfrac{13}{54}\)
b) \(\dfrac{8}{20}=\dfrac{8:4}{20:4}=\dfrac{2}{5}\)
\(\dfrac{10}{16}=\dfrac{10:2}{16:2}=\dfrac{5}{8}\)
\(\dfrac{25}{65}=\dfrac{25:5}{65:5}=\dfrac{5}{13}\)
A = \(\dfrac{8}{1\times3}\) + \(\dfrac{8}{3\times5}\) + \(\dfrac{8}{5\times7}\) +......+\(\dfrac{8}{99\times101}\)
A = 4 x ( \(\dfrac{2}{1\times3}\) + \(\dfrac{2}{3\times5}\) + \(\dfrac{2}{5\times7}\) +........+ \(\dfrac{2}{99\times101}\)
A = 4 x ( \(\dfrac{1}{1}\) - \(\dfrac{1}{3}\)+ \(\dfrac{1}{3}\)- \(\dfrac{1}{5}\) + \(\dfrac{1}{5}\) - \(\dfrac{1}{7}\) +........+ \(\dfrac{1}{99}\) - \(\dfrac{1}{101}\))
A = 4 x ( 1 - \(\dfrac{1}{101}\) )
A = \(\dfrac{400}{101}\)
\(\dfrac{8}{1\times3}+\dfrac{8}{3\times5}+\dfrac{8}{5\times7}+...+\dfrac{8}{99\times101}\)
\(=4\left(\dfrac{2}{1\times3}+\dfrac{2}{3\times5}+\dfrac{2}{5\times7}+...+\dfrac{2}{99\times101}\right)\)
\(=4\left(\dfrac{1}{1}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{99}-\dfrac{1}{101}\right)\)
\(=4\left(\dfrac{1}{1}-\dfrac{1}{101}\right)\)
\(=4.\dfrac{100}{101}\)
\(=\dfrac{400}{101}\)