K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 1 2017

2 ^ 0 = 1

A = 1 + 2 + 2 ^ 2 + ... + 2 ^ 2015

A x 2 = ( 1 + 2 + 2 ^ 2 + .., + 2 ^ 2015 ) x 2

A x 2 = 2 + 2^ 2 + 2 ^ 3 + ... + 2 ^ 2016

A x 2 = ( 1 + 2 + 2 ^ 2 + 2 ^ 3 + ... + 2 ^ 2015 ) + 2 ^ 2016 - 1

A x 2 =                A                                        + 2 ^ 2016 - 1

A =              2 ^ 2016 - 1 ( cung bớt các 2 về đi A )

=> 2 ^ 2016 hơn 2 ^ 2016 - 1 một đơn vị

=> 2 ^ 2016 và  2 ^ 2016 - 1 là 2 số nguyên liên tiếp

Hay A và B là 2 số nguyên liên tiếp

A= 2^0+2^1+2^2+......+2^2015

A=2^2015-1 mà B= 2^2016

A và B là 2 số nguyên liên tiếp

1 tháng 9 2023

a) \(A=1+2+2^2+...+2^{80}\)

\(2A=2+2^2+2^3+...+2^{81}\)

\(2A-A=2+2^2+2^3+...+2^{81}-1-2-2^2-...-2^{80}\)

\(A=2^{81}-1\)

Nên A + 1 là:

\(A+1=2^{81}-1+1=2^{81}\)

b) \(B=1+3+3^2+...+3^{99}\)

\(3B=3+3^2+3^3+...+3^{100}\)

\(3B-B=3+3^2+3^3+...+3^{100}-1-3-3^2-...-3^{99}\)

\(2B=3^{100}-1\)

Nên 2B + 1 là:

\(2B+1=3^{100}-1+1=3^{100}\)

1 tháng 9 2023

2) 

a) \(2^x\cdot\left(1+2+2^2+...+2^{2015}\right)+1=2^{2016}\)

Gọi:

\(A=1+2+2^2+...+2^{2015}\)

\(2A=2+2^2+2^3+...+2^{2016}\)

\(A=2^{2016}-1\)

Ta có:

\(2^x\cdot\left(2^{2016}-1\right)+1=2^{2016}\)

\(\Rightarrow2^x\cdot\left(2^{2016}-1\right)=2^{2016}-1\)

\(\Rightarrow2^x=\dfrac{2^{2016}-1}{2^{2016}-1}=1\)

\(\Rightarrow2^x=2^0\)

\(\Rightarrow x=0\)

b) \(8^x-1=1+2+2^2+...+2^{2015}\)

Gọi: \(B=1+2+2^2+...+2^{2015}\)

\(2B=2+2^2+2^3+...+2^{2016}\)

\(B=2^{2016}-1\)

Ta có:

\(8^x-1=2^{2016}-1\)

\(\Rightarrow\left(2^3\right)^x-1=2^{2016}-1\)

\(\Rightarrow2^{3x}-1=2^{2016}-1\)

\(\Rightarrow2^{3x}=2^{2016}\)

\(\Rightarrow3x=2016\)

\(\Rightarrow x=\dfrac{2016}{3}\)

\(\Rightarrow x=672\)

\(2A=2^1+2^2+...+2^{20}\)

\(\Leftrightarrow2A-A=2^1+2^2+...+2^{20}-2^0-...-2^{19}\)

\(\Leftrightarrow A=2^{20}-1\)

Vậy: A và B là hai số tự nhiên liên tiếp

18 tháng 2 2022

Cảm ơn nhé

 

3 tháng 9 2023

\(A=2^1+2^2+2^3+...+2^{2016}\)

\(\Rightarrow A=2\left(1+2^1+2^2\right)+2^4\left(1+2^1+2^2\right)...+2^{2014}\left(1+2^1+2^2\right)\)

\(\Rightarrow A=2.7+2^4.7...+2^{2014}.7\)

\(\Rightarrow A=7\left(2+2^4...+2^{2014}\right)⋮7\)

\(\Rightarrow dpcm\)

15 tháng 12 2018

Số thứ nhất là n, số thứ 2 là n + 1, ƯC ( n, n+ 1)= a

Ta có : n chia hết cho a (1)

          n + 1 chia hết cho a (2)

Từ (1) và (2) ta được :

n+ 1 - n chia hết cho a

=> 1 chia hết cho a

=> a = 1

=> ƯC ( n, n+1) = 1

=> n và n + 1 là hai số nguyên tố cùng nhau.

Vậy 2 số tự nhiên liên tiếp là 2 số nguyên tố cùng nhau.

Do a + b + c là 3 số tự nhiên chẵn liên tiếp tăng dần
=> a + b + c = a + a + 2 + a + 4
= 3a + 6
= 3 . ( a + 2 )
=> a + b + c = 3 . ( a + 2 )
=> 3 . ( a + 2 ) = 66
=> a + 2 = 22
=> a = 20

Do a,b,c là 3 số tự nhiên chẵn liên tiếp tăng dần nên
=> a = 20 ; b = 22 ; c = 24

tự  lập bảng và nhận xét

~ học tốt ~

27 tháng 12 2018

Chi tiết chút nhé mấy bạn , vì ..................... mình ..................... ngu toán nhé !

Giả sử 2 số đó là a, b. Chẳng hạn b = a + 1. gọi d là ước chung lớn nhất của a, b. do cách phân tích của b = a+1 và d là ước của b,a nên d phải là ước của 1, nên d trùng 1 
=>xong^^ 

Lưu ý a = b + c, một số là ước của a và b thì phải là ước của c, hoặc a, b chia hết một số thì c cũng phải chia hết số đó

DD
16 tháng 1 2021

\(A=3^0+3^1+3^2+...+3^{2018}\)

\(3A=3^1+3^2+3^3+...+3^{2018}+3^{2019}\)

\(\Rightarrow3A-A=\left(3^1+3^2+...+3^{2019}\right)-\left(3^0+3^1+...+3^{2018}\right)\)

\(2A=3^{2019}-3^0=3^{2019}-1\)

a ) Gọi 2 số nguyên liên tiếp lần lượt là a và a + 1 

Nếu a là số chẵn => a chia hết cho 2 

Nếu a là số lẻ => a + 1 là số chẵn => a + 1 chia hết cho 2

Vậy trong 2 số nguyên liên tiếp có 1 số chia hết cho 2 .

b ) Gọi 3 số nguyên liên tiếp lần lượt là a , a + 1 và a + 2

Nếu a chia hết cho 3 thì bài toán luôn đúng

Nếu a chia 3 dư 1 thì a = 3k +1

=> a + 2 = 3k + 1 + 2 = 3k + 3 

=> a + 2 chia hết cho 3

Nếu a chia 3 dư 2 thì a = 3k + 2

=> a + 1 = 3k + 2 + 1 = 3k + 3

=> a + 1 chia hết cho 3

Vậy trong 3 số nguyên liên tiếp có 1 số chia hết cho 3 .

A=(1+2+2^2)+2^3(1+2+2^2)+...+2^2013(1+2+2^2)+2^2016

=7(1+2^3+...+2^2013)+2^2016

Vì 2^2016 chia 7 dư 1

nên A chia 7 dư 1