Cho đường thẳng \(\Delta:3x+4y+8=0\) và I (1;1). Viết phương trình đường tròn cắt \(\Delta\) tại 2 điểm A, B sao cho tam giác IAB có diện tích lớn nhất.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(d\left(M;\Delta\right)=\dfrac{\left|3.2+4.5-m\right|}{\sqrt{3^2+4^2}}=1\)
\(\Leftrightarrow\left|26-m\right|=5\Rightarrow\left[{}\begin{matrix}m=21\\m=31\end{matrix}\right.\)
Ta có vectơ pháp tuyến của hai đường thẳng là \(\overrightarrow {{n_1}} = \left( {3;4} \right),\overrightarrow {{n_2}} = \left( {6;8} \right)\) suy ra hai đường thẳng này song song, nên khoảng cách giữa chúng là khoảng cách từ một điểm bất kì từ đường thẳng này tới đường thẳng kia
Chọn điểm \(A\left( {0;\frac{5}{2}} \right) \in \Delta \), suy ra \(d\left( {\Delta ,\Delta '} \right) = d\left( {A,\Delta '} \right) = \frac{{\left| {6.0 + 8.\frac{5}{2} - 1} \right|}}{{\sqrt {{6^2} + {8^2}} }} = \frac{{19}}{{10}}\)
Vậy khoảng cách giữa hai đường thẳng \(\Delta :3x + 4y - 10 = 0\) và \(\Delta ':6x + 8y - 1 = 0\) là \(\frac{{19}}{{10}}\)
a.
Gọi \(M\left(x;y\right)\in d\)
\(\Rightarrow d\left(M;\Delta\right)=3\Leftrightarrow\dfrac{\left|3x-4y+6\right|}{\sqrt{3^2+4^2}}=3\)
\(\Leftrightarrow\left|3x-4y+6\right|=15\Rightarrow\left[{}\begin{matrix}3x-4y+21=0\\3x-4y-9=0\end{matrix}\right.\)
b.
Giả sử đường thẳng (d2) có dạng \(a\left(x+2\right)+b\left(y-3\right)=0\Leftrightarrow ax+by+2a-3b=0\) (1)
\(\dfrac{\left|3.a-4b\right|}{5\sqrt{a^2+b^2}}=\dfrac{1}{\sqrt{2}}\Leftrightarrow2\left(3a-4b\right)^2=25a^2+25b^2\)
\(\Leftrightarrow7a^2+48ab-7b^2=0\)
\(\Leftrightarrow\left[{}\begin{matrix}7a=b\\a=-7b\end{matrix}\right.\) \(\Rightarrow\left(a;b\right)=\left(1;7\right);\left(7;-1\right)\)
\(\Rightarrow...\) (bạn tự thế vào (1) và rút gọn)
Ta có \(\frac{6}{3} = \frac{8}{4} \ne \frac{{ - 13}}{{ - 27}}\) nên hai đường thẳng này song song với nhau.
Chọn điểm \(A(9;0) \in \Delta '\) ta có:
\(d\left( {\Delta ,\Delta '} \right) = d\left( {A,\Delta } \right) = \frac{{\left| {6.9 + 8.0 - 13} \right|}}{{\sqrt {{6^2} + {8^2}} }} = \frac{{41}}{{10}}\)
Vậy khoảng cách giữa hai đường thẳng đã cho là \(\frac{{41}}{{10}}\)
Đường thẳng \(\Delta\) nhận (3;-4) là 1 vtpt
a. Do \(d_1||\Delta\) nên \(d_1\) cũng nhận (3;-4) là 1 vtpt
Phương trình d1:
\(3\left(x-2\right)-4\left(y-5\right)=0\Leftrightarrow3x-4y+14=0\)
b. Do d2 vuông góc \(\Delta\) nên d2 nhận (4;3) là 1 vtpt
Phương trình d2:
\(4\left(x-2\right)+3\left(y-5\right)=0\Leftrightarrow4x+3y-23=0\)
Vì hai đường thẳng \(\Delta \) và d song song với nhau nên ta có thể chọn \(\overrightarrow {{n_\Delta }} = \overrightarrow {{n_d}} = \left( {3; - 4} \right)\).
Mặt khác, \(\Delta \) đi qua điểm \(M\left( { - 1;2} \right)\)nên phương trình \(\Delta \) là:
\(3\left( {x + 1} \right) - 4\left( {y - 2} \right) = 0 \Leftrightarrow 3x - 4y + 11 = 0\).
Chắc chắn đây là 1 đề bài sai rồi.
Do I cố định nên \(d\left(I;\Delta\right)\) cố định
Do đó S max khi AB max, AB max khi R max, mà R có thể tiến tới vô cực