K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

nếu như được 5 k mình sẽ trả lời chứ trả lời rùi không ai k cũng như không

5 tháng 1 2017

tụi mình k cho

15 tháng 2 2020

Ko cần vẽ hình

15 tháng 2 2020

a, xét tam giác ACH và tam giác KCH có : CH chung

góc AHC = góc KHC = 90 

AH = HK do H là trđ của AK (gt)

=> tam giác ACH = tam giác KCH (2cgv)

b, xét tam giác  AEC và tam giác DEB có : góc BED = góc CEA (đối đỉnh)

BE= EC do E là trđ của BC (GT)

AE = ED do E là trđ của AD (gt)

=> tam giác AEC = tam giác DEB (c-g-c)

=> BD = AC (đn)

 tam giác ACH = tam giác KCH (câu a) => AC = CK (đn)

=> BD = CK (tcbc)

c, xét tam giác AEH và tam giác KEH có: EH chung

AH = HK (câu a)

góc AHE = góc KHE = 90

=> tam giác AEH = tam giác KEH (2cgv)

=> góc AEH = góc KEH mà EH nằm giữa EA và EK 

=> EH là phân giác của góc AEK (đn)

1 tháng 12 2022

 

hình bạn nhé :

Xét ΔABEΔABE và ΔDCEΔDCE có :

EB=ECEB=EC (EE là trung điểm BCBC)

EA=EDEA=ED (EE là trung điểm ADAD)

∠AEB=∠DEC∠AEB=∠DEC (đối đỉnh)

⇒ΔABE=ΔDCE(c−g−c)⇒ΔABE=ΔDCE(c−g−c)

b) Chứng minh: AC//BDAC//BD.

Xét ΔACEΔACE và ΔDBEΔDBE có :

EB=ECEB=EC (EE là trung điểm BCBC)

EA=EDEA=ED (EE là trung điểm ADAD)

∠AEC=∠DEB∠AEC=∠DEB (đối đỉnh)

⇒ΔACE=ΔDBE(c−g−c)⇒ΔACE=ΔDBE(c−g−c)

⇒∠ACE=DBE⇒∠ACE=DBE (góc tương ứng)

Mà hai góc ở vị trí so le trong nên AC//BDAC//BD (đpcm)

c) Vẽ AHAH vuông góc với ECEC (HH thuộc BCBC). Trên tia AHAH lấy điểm KK sao cho HH là trung điểm của AKAK. Chứng  minh rằng BD=AC=CKBD=AC=CK.

Ta có : ΔACE=ΔDBE(cmt)ΔACE=ΔDBE(cmt)⇒BD=AC⇒BD=AC (cạnh tương ứng) (1)

Xét ΔCAHΔCAH và ΔCKHΔCKH có :

CHCH chung

∠CHA=∠CHK=900∠CHA=∠CHK=900

HA=HK(gt)HA=HK(gt)

⇒ΔCAH=ΔCKH(c−g−c)⇒ΔCAH=ΔCKH(c−g−c)

⇒CA=CK⇒CA=CK (2)

Từ (1) và (2) suy ra AC=BD=CKAC=BD=CK (đpcm)

d) Chứng minh DKDK vuông góc với AHAH.

Nối EE với KK.

Xét ΔEAHΔEAH và ΔEKHΔEKH có :

EHEH chung

∠EHA=∠EHK=900∠EHA=∠EHK=900

HA=HK(gt)HA=HK(gt)

⇒ΔEAH=ΔEKH(c−g−c)⇒ΔEAH=ΔEKH(c−g−c) ⇒∠EAH=∠EKH⇒∠EAH=∠EKH (góc t/ư) (3)

EK=EAEK=EA (cạnh t/ư), mà EA=ED(gt)EA=ED(gt) ⇒EK=ED⇒EK=ED ⇒ΔEKD⇒ΔEKD cân tại EE

⇒∠EKD=∠EDK⇒∠EKD=∠EDK (t/c) (4)

Từ (3) và (4) suy ra ∠EAK+∠EDK=∠EKA+∠EKD=∠AKD∠EAK+∠EDK=∠EKA+∠EKD=∠AKD

Tam giác AKDAKD có : ∠EAK+∠EDK+∠AKD=1800∠EAK+∠EDK+∠AKD=1800

⇒∠AKD+∠AKD=1800⇒2∠AKD=1800⇒∠AKD=1800:2=900⇒∠AKD+∠AKD=1800⇒2∠AKD=1800⇒∠AKD=1800:2=900

Vậy AK⊥KDAK⊥KD (đpcm).

chúc bạn học tốt

1. Cho tia Ot là tia phân giác của góc xOy nhọn. Trên tia Ox lấy điểm A, trên tia Oy lấy điểm B sao cho OA = OB. Trên tia Oy lấy điểm H sao cho OH > OAa) Chứng minh: Tam giác OAH = tam giác OBHb) Tia AH cắt Oy tại M, tia BH catứ tia Ox tại N. Chứng minh tam giác OAM = tam giác OBNc) Chứng minh AB vuông góc với OHd) Gọi K là trung điểm của MN. Chứng minh: K thuộc tia Ot2. Cho góc nhọn xAy. Trên tia Ax lấy B. Trên tia Ay lấy C...
Đọc tiếp

1. Cho tia Ot là tia phân giác của góc xOy nhọn. Trên tia Ox lấy điểm A, trên tia Oy lấy điểm B sao cho OA = OB. Trên tia Oy lấy điểm H sao cho OH > OA

a) Chứng minh: Tam giác OAH = tam giác OBH

b) Tia AH cắt Oy tại M, tia BH catứ tia Ox tại N. Chứng minh tam giác OAM = tam giác OBN

c) Chứng minh AB vuông góc với OH

d) Gọi K là trung điểm của MN. Chứng minh: K thuộc tia Ot

2. Cho góc nhọn xAy. Trên tia Ax lấy B. Trên tia Ay lấy C sao cho AB - AC. Kẻ BH vuông góc AC (H thuộc AC) và CK vuông góc AB (K thuộc AB)

a) Chứng minh góc ABH = góc ACK

b) BH cắt CK tại E. Chứng minh AE vuông góc BC

c) Tam giác ABC phải thoả mãn điều kiện gì để E là điểm cách đều 3 cạnh ?

3. Cho tam giác ABC vuông tại A. Gọi M là trung điểm của BC. Trên tia đối của tia MA lấy điểm D sao cho MD = MA

a) Chứng minh: Tam giác AMB = tam giác DMC

b) Chứng minh: AC = BD và AC //BD

c) Chứng minh: Tam giác ABC = tam giác DCB. Tính số đo góc BDC

4. Cho tam giác ABC vuông tại A có góc ABC = 60 độ

a) Tính số đo góc ACB

b) Trên tia đối của tia AC lấy điểm D sao cho AD = AC. Chứng minh tam giác ABD = tam giác ABC

c) Vẽ tia Bx là tia phân giác của góc ABC. Qua C vẽ đường thẳng vuông góc với AC, cắt tia Bx tại E. Chứng minh AC = 1/2 BE

2
1 tháng 8 2016

Võ Hùng Nam hảo hảo a~

Bài 3: 

a: Xét ΔAMB và ΔDMC có

MA=MD

\(\widehat{AMB}=\widehat{DMC}\)

MB=MC

Do đó: ΔAMB=ΔDMC

b: Xét tứ giác ABDC có 

M là trung điểm của BC

M là trung điểm của AD
Do đó: ABDC là hình bình hành

Suy ra:AC//BD và AC=BD

c: Xét ΔABC và ΔDCB có 

AB=DC

\(\widehat{ABC}=\widehat{DCB}\)

BC chung

Do đó: ΔABC=ΔDCB

Suy ra: \(\widehat{BAC}=\widehat{CDB}=90^0\)

Bài 1: Cho tam giác ABC có CA = CB = 10 cm AB = 12 cm. Kẻ CI vuông góc với AB (I thuộc AB )a,chứng minh rằng IA=IBb, Tính độ dài ICc, Kẻ IH vuông với AC (H thuộc AC) kẻ IK vuông góc với BC (K thuộc BC).So sánh các độ dài IH và IKBài 2: cho tam giác ABC cân tại A. Trên cạnh AB lấy điểm D. Trên cạnh AC lấy điểm E sao cho AD=AEa, chứng minh rằng BE=CDb, chứng minh rằng góc ABE bằng góc ACDc, Gọi K là giao điểm của...
Đọc tiếp

Bài 1: Cho tam giác ABC có CA = CB = 10 cm AB = 12 cm. Kẻ CI vuông góc với AB (I thuộc AB )

a,chứng minh rằng IA=IB

b, Tính độ dài IC

c, Kẻ IH vuông với AC (H thuộc AC) kẻ IK vuông góc với BC (K thuộc BC).So sánh các độ dài IH và IK

Bài 2: cho tam giác ABC cân tại A. Trên cạnh AB lấy điểm D. Trên cạnh AC lấy điểm E sao cho AD=AE

a, chứng minh rằng BE=CD

b, chứng minh rằng góc ABE bằng góc ACD

c, Gọi K là giao điểm của BE và CD. Tam giác KBC là tam giác gì? Vì sao?

Bài 3: Cho tam giác ABC vuông ở C, có góc A bằng 60 độ tia phân giác của góc BAC cắt BC ở E kẻ CK vuông góc với AB (K thuộc AB) kẻ BD vuông góc với tia AE (D thuộc tia AE)chứng minh:

a, AC=AK và AE vuông góc CK

b,KB=KA

c, EB > AC

d, ba đường AC,BD,KE cùng đi qua 1 điểm

Bài 4: Cho tam giác nhọn ABC vẽ ra phía ngoài tam giác ABC các tam giác đều ABD và ACE .Gọi M là giao điểm của DC và BE Chứng minh rằng:

a, tam giác ABE=tam giác ADC

b,góc BMC=120°

Bài 5: Cho tam giác ABC vuông ở C ,có góc A bằng 60 độ tia phân giác của góc BAC cắt BC ở E,kẻ EK vuông góc với AB( K thuộc AB)kẻ BD vuông góc với AE (D thuộc AE) chứng minh

a,AK=KB

b, AD=BC

2
12 tháng 5 2019

C1 :

Hình : tự vẽ 

a )Vì CA=CB ( đề bài cho ) => tam giác ABC cân tại C

                                       mà CI vuông góc vs AB => CI là đường cao của tam giác ABC 

=> CI cũng là đường trung tuyến của tam giác ABC ( t/c tam giác cân )

=> IA=IB (đpcm)

12 tháng 5 2019

C1 : 

b) Có IA=IB ( cm phần a ) 

mà IA+IB = AB 

      IA + IA = 12 (cm)

=> IA = \(\frac{12}{2}=6\left(cm\right)\)

Xét tam giác vuông CIA có :     CI2  +   IA2  = CA2  ( Đ/l Py-ta -go )

                                                   CI2 +  62     = 102

                                                          CI2       = 102  - 6= 64

=> CI = \(\sqrt{64}=8\left(cm\right)\)

Vậy CI ( hay IC ) = 8cm