K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 9 2022

$(2m + 3)(-1) - m  + 1 = 3$
$⇔ -2m - 3 - m + 1 = 3$
$⇔ -3m - 2 = 3$
$⇔ - 3m = 5$
$⇔ m = \dfrac{-5}{3}$

14 tháng 9 2022

(2m+3)(-1) - m + 1 = 3

-2m - 3 - m + 1 = 3

-3m - 2 = 3

-3m = 5

m = - 5: 3

m = -5/3

28 tháng 11 2018

a) Rút gọn A = ( 5 m ) 2   =   25 m 2 . Với m = 2 Þ A = 100.

b) Rút gọn B = -12x + 26. Với x = 10 Þ B = -94.

8 tháng 11 2018

a)  1 , 5 x 2   –   1 , 6 x   +   0 , 1   =   0

Có a = 1,5; b = -1,6; c = 0,1

⇒ a + b + c = 1,5 – 1,6 + 0,1 = 0

⇒ Phương trình có hai nghiệm  x 1   =   1 ;   x 2   =   c / a   =   1 / 15 .

Giải bài 31 trang 54 SGK Toán 9 Tập 2 | Giải toán lớp 9

d)  ( m   –   1 ) x 2   –   ( 2 m   +   3 ) x   +   m   +   4   =   0

Có a = m – 1 ; b = - (2m + 3) ; c = m + 4

⇒ a + b + c = (m – 1) – (2m + 3) + m + 4 = m -1 – 2m – 3 + m + 4 = 0

⇒ Phương trình có hai nghiệm Giải bài 31 trang 54 SGK Toán 9 Tập 2 | Giải toán lớp 9

27 tháng 12 2023

a) √(√3 - 2)² + √3

= 2 - √3 + √3

= 2

b) Để (d) và (d') cắt nhau thì:

m + 2 ≠ -2

m ≠ -2 - 2

m ≠ -4

Vậy m ≠ -4 thì (d) cắt (d')

c) Thay tọa độ điểm A(3; -1) vào (d) ta có:

(2m - 3).3 + m = -1

⇔ 6m - 9 + m = -1

⇔ 7m = -1 + 9

⇔ 7m = 8

⇔ m = 8/7 (nhận)

Thay m = 8/7 vào (d) ta có:

(d): y = -5x/7 - 8/7

Vậy hệ số góc của (d) là -5/7

1 tháng 5 2017

a)

\(\dfrac{2-x}{2002}-1=\dfrac{1-x}{2003}-\dfrac{x}{2004}\)

\(\Leftrightarrow\dfrac{2-x}{2002}+1=\dfrac{1-x}{2003}+1+\dfrac{-x}{2004}+1\)

\(\Leftrightarrow\dfrac{2004-x}{2002}-\dfrac{2004-x}{2003}-\dfrac{2004-x}{2004}=0\)

\(\Leftrightarrow\left(2004-x\right)\left(\dfrac{1}{2002}-\dfrac{1}{2003}-\dfrac{1}{2004}\right)\)

\(\Leftrightarrow2004-x=0\) (vì \(\dfrac{1}{2002}-\dfrac{1}{2003}-\dfrac{1}{2004}\ne0\))

\(\Leftrightarrow x=2004\)

S={2004}

16 tháng 12 2020

a) Để điểm A(m;2m+1) thuộc đồ thị hàm số (1) thì:

2m+1=3m+5 <=> m=-4

b) Ta có:

\(f\left(\dfrac{-1}{2}\right)+f\left(3\right)=3.\dfrac{-1}{2}+5+3.3+5\\ =\dfrac{35}{2}\)

2 tháng 12 2023

Cho đường thẳng (d): (y=(2m+1)x-2) với m là tham số và (m\ne-\frac{1}{2}.) Khoảng cách từ (A(-2;1)) đến đường thẳng d được tính theo công thức:

[\sqrt{(-2-(2m+1)(-2))^2+(1-(2m+1)(-2))^2}]

[\sqrt{(16m^2+20m+4)^2+(24m+4)^2}]

[\sqrt{256m^4+640m^3+320m^2+576m^2+960m+16}]

[\sqrt{256m^4+1216m^3+1536m^2+960m+16}]

[\sqrt{16m^2(16m^2+79m+96)+4(16m^2+79m+96)}]

[\sqrt{(4m+7)^2(4m+16)}]

Theo đề bài, khoảng cách này bằng (\frac{1}{\sqrt{2}}.) Do đó, ta có phương trình:

[\sqrt{(4m+7)^2(4m+16)}=\frac{1}{\sqrt{2}}]

Từ đây, ta được phương trình bậc hai:

[(4m+7)^2(4m+16)=1 ]

Giải phương trình này, ta được hai nghiệm:

[m=-\frac{3}{2}\pm\frac{\sqrt{3}}{2} ]

Do (m\ne-\frac{1}{2},) ta có nghiệm duy nhất là:

[m=-\frac{3}{2}+\frac{\sqrt{3}}{2}=\frac{5}{7} ]

Vậy, tổng các giá trị của m thỏa mãn bài toán là [\frac{5}{7}.]

a: \(\text{Δ}=\left(-5\right)^2-4\left(-2m+5\right)\)

=25+8m-20=8m+5

Để phương trình có nghiệm kép thì 8m+5=0

=>m=-5/8

=>x^2-5x+25/4=0

=>x=5/2

b: \(\text{Δ}=\left(2m-1\right)^2-4\left(m^2-2m+3\right)\)

\(=4m^2-4m+1-4m^2+8m-12=4m-11\)

Để phương trình có nghiệm kép thì 4m-11=0

=>m=11/4

=>x^2-9/2x+81/16=0

=>x=9/4

c: TH1: m=-3

=>-(2*(-3)+1)x+(-3-1)=0

=>-(-5x)-4=0

=>5x-4=0

=>x=4/5(nhận)

TH2: m<>-3

\(\text{Δ}=\left(2m+1\right)^2-4\left(m+3\right)\left(m-1\right)\)

\(=4m^2+4m+1-4\left(m^2+2m-3\right)\)

\(=4m^2+4m+1-4m^2-8m+12=-4m+13\)

Để phương trình có nghiệm kép thì -4m+13=0

=>m=13/4

=>25/4x^2-15/2x+9/4=0

=>(5/2x-3/2)^2=0

=>x=3/2:5/2=3/2*2/5=3/5