Cho tam giác ABC (AB>AC), trung tuyến AM,trên tia đối của tia MA lấy điểm D sao cho MD= MA.
a. Chứng minh ABDC là hình bình hành
b.Gọi E là điểm đối xứng của A qua BC.Chứng minh BC song song với ED
c.Chứng minh BCDE là hình thang cân.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét tứ giác ABDC có
M là trung điểm chung của AD và BC
nên ABDC là hình bình hành
mà góc BAC=90 độ
nên ABDC là hình chữ nhật
b,d: Xét tứ giác AEHF có góc AEH=góc AFH=góc FAE=90 độ
nên AEHF là hình chữ nhật
Suy ra: góc AFE=góc AHE=góc ABC
Ta có: ΔABC vuông tại A
mà AM là đường trung tuyến
nên MA=MC
=>góc MAC=góc ACB
=>góc MAC+góc EFA=90 độ
=>AM vuông góc với EF
c: Xét ΔADI có
H,M lần lượt là trung điểm của AI và AD
nên HM là đường trung bình
=>HM//DI
=>DI//BC
Xét ΔCIA có
CH là đường cao
CH là đường trung tuyến
Do đó: ΔCIA cân tại C
=>CI=CA=DB
=>BIDC là hình thang cân
a) Tứ giác ABDC có:
M là trung điểm của BC (gt)
M là trung điểm của AD (gt)
⇒ ABDC là hình bình hành
Mà ∠BAC = 90⁰ (∆ABC vuông tại A)
⇒ ABDC là hình chữ nhật
b) Do ABDC là hình chữ nhật (cmt)
⇒ CD = AB (1)
Do B là trung điểm của AE (gt)
⇒ BE = AB = AE : 2 (2)
Từ (1) và (2) ⇒ CD = BE
Do ABDC là hình chữ nhật (cmt)
⇒ CD // AB
⇒ CD // BE
Tứ giác BEDC có:
CD // BE (cmt)
CD = BE (cmt)
⇒ BEDC là hình bình hành
c) Do ABDC là hình chữ nhật (cmt)
⇒ AC // BD
Do đó AC, BD, EK đồng quy là vô lý
Em xem lại đề nhé!
a) Xét ∆CMA và ∆BMD:
Góc CMA= góc BMD (đối đỉnh)
MA=MD (gt)
MC=MB (M là trung điểm BC)
=> ∆CMA=∆BMD(c.g.c)
=> góc CAM = góc BDM và CA=DB
Mà 2 góc CAM và góc BDM nằm ở vị trí so lo trong nên CA//DB
=> CABD là hình bình hành
Lại có góc CAB = 90 độ (gt)
=> ACDB là hình chữ nhật
b) Vì E là điểm đối xứng của C qua A nên EAB=90độ=DBA
Mà 2 góc này ở bị trí so le trong nên AE//DB
Lại có AE=BD(=CA)
=> AEBD là hình bình hành
a) chứng minh theo dấu hiệu: tứ giác 2 đường chéo cắt nhau tại trung điểm là hình bình hành (bạn tự cm nhé ^^!)
b) Kẻ BE. Gọi giao điểm của BM và AE là H
tam giác ABE có BH _|_ AE và HA=HE
=> tam giác ABE cân tại B hay AB = EB (1)
Mà AB = CD (do tứ giác ABDC là hbh) (2)
Từ (1) và (2) => CD = EB (*)
Tam giác EAD: HA=HE và MA=MD => HM // ED => tứ giác CBDE là hình thang (**)
Từ (*) và (**) => CBDE là hình thang cân
a) Chứng minh : ABCD là hình bình hành
Xét : Tứ giác ABCD có :
M trung điểm AD ( MD = MA (gt) ; M , D , A thẳng hàng )
M trung điểm BC ( AM trung tuyến của tam giác ABC (gt) )
Vậy ABCD là hình bình hành (đpcm)
b) Chứng minh : BC song song ED
Gọi I là giao điểm của AE với BC
Xét : Tam giác AED có :
M trung điểm BC ( cmt )
I trung điểm AE ( A đối xứng E qua BC (gt) => BC trung trực AE , AE cắt BC tại I )
Vậy BI là đường trung bình của tam giác AED
=> MI song song ED
Mà : MI thuộc BC
Nên : BC song song ED ( đpcm )
c) Chứng minh : BCDE là hình thang cân
Ta có :
. BC song song ED ( cmt )
=> Hình thang BCDE (1)
. Góc IBA = góc BCD ( AB song song CD ( hình bình hành ABCD ))
. A đối xứng với E qua BC (gt) => BC trung trực AE => BA = BE => Tam giác AEB cân tại B => BI là trung trực AE đồng thời là phân giác của tam giác AEB => Góc CBE = góc IBA
Vậy góc CBE = góc BCD ( = góc IBA ) (2)
Từ (1) và (2) =.> Hình thang cân BCDE ( đpcm)
b: Xét tứ giác ABDC có
M là trung điểm của AD
M là trung điểm của BC
Do đó: ABDC là hình bình hành
mà AD=BC
nên ABDC là hình chữ nhật
b: Xét tứ giác ABDC có
M là trung điểm của BC
M là trung điểm của AD
Do đó: ABDC là hình bình hành
mà AD=BC
nên ABDC là hình chữ nhật