Cho M là 1 điểm bất kì nằm trong tam giác đều ABC các, điểm A',B',C' là hình chiếu của M trên các cạnh BC,AC,AB.
Tính tỉ số T =\(\frac{MA'+MB'+MC'}{AB'+BC'+CA'}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ai chắc chắn giải được thì giải, đừng copy ở đâu cả. Bài lần trước Hà Hà copy ở wed khác làm sai mà Hoc24 vẫn chọn, làm tui mất điểm bài đó trong Violympic/.
Cho tam giác đều ABC, cạnh bằng 3cm. M là điểm bất kì nằm trong tam giác. Qua M kẻ các đường thẳng song song với AB, BC, CA, chúng cắt BC, CA, AB theo thứ tự ở A'; B'; C'. Ta có MA' + MB' + MC' =
Mình gợi ý nhé : Qua M kẻ các đường thẳng song song với 3 cạnh của tam giác :)
Bổ đề: Tam giác đều thì mỗi đường cao bằng một nửa tích của √3 và cạnh tương ứng với đường cao đó (*)
Giải: Qua M vẽ các đường thẳng song song với các cạnh của ∆ABC, chúng chia mỗi cạnh thành ba đoạn thẳng x, y, z. Áp dụng bổ đề (*), ta có: MA' + MB' + MC' = 1/2(x√3 + y√3 + z√3) = (x + y + z).√3/2 (1)
AB' + BC' + CA' = (z + y/2) + (x + z/2) + (y + x/2) = 3/2(x + y + z) (2)
Từ (1) và (2) suy ra T = √3/3