cho 60 độ<alpha<90 độ: tìm GTNN của biểu thức : (tan alpha -1)^2 + ((1/tan alpha)-1)^2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(AC=BC\cdot\sin\widehat{B}=60\cdot\dfrac{1}{2}=30\left(cm\right)\)
\(AB=\sqrt{60^2-30^2}=30\sqrt{3}\)
b: \(AC=BC\cdot\cos\widehat{C}=106\cdot\dfrac{1}{2}=53\left(cm\right)\)
\(AB=\sqrt{106^2-53^2}=53\sqrt{3}\left(cm\right)\)
a: Xét ΔABC có \(\widehat{A}+\widehat{B}+\widehat{C}=180^0\)
=>\(\widehat{C}=180^0-60^0-45^0=75^0\)
Xét ΔABC có \(\dfrac{BC}{sinA}=\dfrac{AC}{sinB}=\dfrac{AB}{sinC}\)
=>\(\dfrac{BC}{sin60}=\dfrac{4}{sin45}=\dfrac{AB}{sin75}\)
=>\(BC=2\sqrt{6};AB=2+2\sqrt{3}\)
b: Xét ΔABC có
\(\dfrac{BC}{sinA}=2R\)
=>\(2R=6:sin60=4\sqrt{3}\)
=>\(R=2\sqrt{3}\)
a: AC=BC⋅sinˆB=60⋅12=30(cm)AC=BC⋅sinB^=60⋅12=30(cm)
AB=√602−302=30√3AB=602−302=303
b: AC=BC⋅cosˆC=106⋅12=53(cm)AC=BC⋅cosC^=106⋅12=53(cm)
AB=√1062−532=53√3(cm)AB=1062−532=533(cm)
Xét tam giác ADB có góc ABD = BAD = 60 độ => tam giác ABD đều => AB = BD = 7 cm
Tam giác ABD có AH nên trung tuyến nên đòng thời là đường cao
Áp dụng địa lý Pi - ta - go trong tam giác vuông ABH có AH = AB - BH = 7 - 3,5 = 36,75
HC = BC - BH = 15 - 3,5 = 11,5
Tam giác AHC có AC = AH + HC = 36,75 + 11 ,5 = 169