K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3(a^2+b^2)=10ab

=>3a^2-10ab+3b^2=0

=>3a^2-9ab-ab+3b^2=0

=>3a(a-3b)-b(a-3b)=0

=>(a-3b)(3a-b)=0

=>b=3a(loại) hoặc a=3b(nhận)

\(K=\dfrac{3b+b}{3b-b}=2\) 

20 tháng 8 2023

Có: \(a+b+c=0\)

\(\Leftrightarrow\left(a+b+c\right)^2=0\)

\(\Leftrightarrow a^2+b^2+c^2+2ab+2bc+2ca=0\)

\(\Leftrightarrow2\left(ab+bc+ca\right)=-1\) (do \(a^2+b^2+c^2=1\) )

\(\Leftrightarrow ab+bc+ca=-\dfrac{1}{2}\)

\(\Leftrightarrow\left(ab+bc+ca\right)^2=\dfrac{1}{4}\)

\(\Leftrightarrow\left(ab\right)^2+\left(bc\right)^2+\left(ca\right)^2+2ab.bc+2bc.ca+2ca.ab=\dfrac{1}{4}\)

\(\Leftrightarrow\left(ab\right)^2+\left(bc\right)^2+\left(ca\right)^2+2abc\left(a+b+c\right)=\dfrac{1}{4}\)

\(\Leftrightarrow \left(ab\right)^2+\left(bc\right)^2+\left(ca\right)^2=\dfrac{1}{4}\) (do \(a+b+c=0\))

Lại có: \(M=a^4+b^4+c^4\)

\(=\left(a^2+b^2+c^2\right)^2-2\left(a^2b^2 +b^2c^2+c^2a^2\right)\)

\(=1-2\left[\left(ab\right)^2+\left(bc\right)^2+\left(ca\right)^2\right]\) (do \(a^2+b^2+c^2=1\))

\(=1-2.\dfrac{1}{4}\)(do \(\left(ab\right)^2+\left(bc\right)^2+\left(ca\right)^2=\dfrac{1}{4}\))

\(=1-\dfrac{1}{2}=\dfrac{1}{2}\)

Vậy \(M=\dfrac{1}{2}\)

2 tháng 1 2020

Câu hỏi của Đậu Đình Kiên - Toán lớp 7 - Học toán với OnlineMath

9 tháng 1 2020

Ta có: \(\frac{ab}{a+b}=\frac{bc}{b+c}=\frac{ca}{c+a}\)

\(\Rightarrow\frac{abc}{c\left(a+b\right)}=\frac{abc}{a\left(b+c\right)}=\frac{abc}{b\left(c+a\right)}\)

\(\Rightarrow c\left(a+b\right)=a\left(b+c\right)=b\left(c+a\right)\)

\(\Rightarrow ac+bc=ab+ac=bc+ab\)

Lại có: \(ac+bc=ab+ac\)\(\Rightarrow bc=ab\)\(\Rightarrow a=c\)   (1)

 \(ab+ac=bc+ab\)\(\Rightarrow ac=bc\)\(\Rightarrow a=b\)              (2)

Từ (1) và (2) \(\Rightarrow a=b=c\) 

Ta có: \(P=\frac{ab^2+bc^2+ca^2}{a^3+b^3+c^3}=\frac{a.a^2+b.b^2+c.c^2}{a^3+b^3+c^3}=\frac{a^3+b^3+c^3}{a^3+b^3+c^3}=1\)

8 tháng 4 2022

ĐK : a;b;c khác 0 

Thấy : \(a^2+b^2+c^2=\left(a+b+c\right)^2\Leftrightarrow ab+bc+ac=0\) (1)

Ta có : \(P=\dfrac{b+c}{a}+\dfrac{c+a}{b}+\dfrac{a+b}{c}\)

Từ (1) suy ra : \(\left(b+c\right)a=-bc\Leftrightarrow\dfrac{b+c}{a}=\dfrac{-bc}{a^2}\)   

CMTT ; ta có : \(\dfrac{c+a}{b}=\dfrac{-ac}{b^2};\dfrac{a+b}{c}=\dfrac{-ab}{c^2}\)

Suy ra : \(P=-\left(\dfrac{ab}{c^2}+\dfrac{bc}{a^2}+\dfrac{ac}{b^2}\right)=-\dfrac{a^3b^3+b^3c^3+a^3c^3}{a^2b^2c^2}\)  (2) 

Đặt : ab = x ; bc = y ; ac = z ; ta có : x + y + z = 0 \(\Rightarrow x^3+y^3+z^3=3xyz\)  (3)

Từ (2) và (3) suy ra : \(P=-\dfrac{3xyz}{xyz}=-3\)

Vậy ... 

4 tháng 8 2015

Dự đoán dấu "=" và chọn điểm rơi phù hợp để áp dụng bất đẳng thức Trung bình cộng - Trung bình nhân