Tìm abc biết a.b.c chia hết cho7 abc chia hết cho 7
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có : abc=100a+10b+c
=98a+2a+7b+3b+c
=(98a+7b)+(2a+3b+c)
mà abc chia hết cho 7 suy rs (98a + 7b )+ (2a+3b+c)chia hết cho 7
mà 98a+7b chia hết cho 7
nên 2a+3b+c chia hết cho 7
Ta có : \(n=\overline{abcdef}=1000\overline{abc}+\overline{def}=6\left(\overline{abc}-\overline{def}\right)+994\overline{abc}+7\overline{def}\)\(=6.\left(\overline{abc}-\overline{def}\right)+7.142\overline{abc}+7\overline{def}\)
\(=6\left(\overline{abc}-\overline{def}\right)+7\left(142\overline{abc}+\overline{def}\right)\)
Vì \(\left(\overline{abc}-\overline{def}\right)⋮7\) nên \(6\left(\overline{abc}-\overline{def}\right)⋮7\)
Lại có \(7\left(142\overline{abc}+\overline{def}\right)⋮7\)
\(\Rightarrow n=6\left(\overline{abc}-\overline{def}\right)+7\left(142\overline{abc}+\overline{def}\right)⋮7\) (đpcm)
Số đó là 266 ; 329 ; 392 ; 455 ; 518 ; 581 ; 644 ; 707 ; 770 ; 833 nha
Ta có : \(\overline{abcdef}=\frac{N}{\overline{def}}\Rightarrow1000\overline{abc}+\overline{def}=\frac{N}{\overline{def}}\)
\(\Rightarrow N=\overline{def}\left(1000\overline{abc}+\overline{def}\right)\)
Ta biến đổi : \(1000\overline{abc}+\overline{def}=\left(994\overline{abc}+7\overline{def}\right)+6\left(\overline{abc}-\overline{def}\right)=7.\left(142\overline{abc}+\overline{def}\right)+6\left(\overline{abc}-\overline{def}\right)\)
Vì \(\left(\overline{abc}-\overline{def}\right)⋮7\) nên \(6\left(\overline{abc}-\overline{def}\right)⋮7\)
Lại có \(7\left(142\overline{abc}+\overline{def}\right)⋮7\) => \(N=\overline{def}.\left[7.\left(142\overline{abc}+\overline{def}\right)+6\left(\overline{abc}-\overline{def}\right)\right]⋮7\)
abc = 241
chi tiết hơn đi