Phân tích đa thuc thah nhan tu
\(\left(a+b\right)\left(a^2-b^2\right)+\left(b+c\right)\left(b^2-c^2\right)+\left(c+a\right)\left(c^2-a^2\right)\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(M=a\left(b^2-c^2\right)+b\left(c^2-a^2\right)+c\left(a^2-b^2\right)\)
\(M=ab^2-ac^2+bc^2-ba^2+c\left(a-b\right)\left(a+b\right)\)
\(M=-ab\left(a-b\right)-c^2\left(a-b\right)+c\left(a-b\right)\left(a+b\right)\)
\(M=\left(a-b\right)\left(-ab-c^2+ac+bc\right)\)
\(M=\left(a-b\right)\left[-a\left(b-c\right)+c\left(b-c\right)\right]\)
\(M=\left(a-b\right)\left(b-c\right)\left(c-a\right)\)
Giờ là cách khác:(tại em làm khá kĩ nên nó dài thôi chứ em trình bày lại trong giấy nó ngắn ngủn à)
Đặt \(b^2-c^2=x;c^2-a^2=y\Rightarrow a^2-b^2=-\left(x+y\right)\)
Suy ra \(M=ax+by-c\left(x+y\right)\)
\(=x\left(a-c\right)+y\left(b-c\right)\)
\(=\left(b^2-c^2\right)\left(a-c\right)+\left(c^2-a^2\right)\left(b-c\right)\)
\(=\left(b-c\right)\left(a-c\right)\left(b+c\right)+\left(c-a\right)\left(b-c\right)\left(c+a\right)\)
\(=\left(b-c\right)\left(a-c\right)\left(b+c\right)-\left(a-c\right)\left(b-c\right)\left(c+a\right)\)
\(=\left(b-c\right)\left(a-c\right)\left(b+c-c-a\right)\)
\(=\left(b-c\right)\left(a-c\right)\left(b-a\right)\) [muốn cho đẹp thì nhân (-1) . (-1) vào thì nó thành (a-b)(b-c)(c-a) ]
\(\left(a+b\right)\left(a^2-b^2\right)+\left(b+c\right)\left(b^2-c^2\right)+\left(c+a\right)\left(c^2-a^2\right)\)
\(=\left(a+b\right)\left(a^2-b^2\right)-\left(b+c\right)\left[c^2-a^2+a^2-b^2\right]+\left(c+a\right)\left(c^2-a^2\right)\)
\(=\left(a+b\right)\left(a^2-b^2\right)-\left(b+c\right)\left(c^2-a^2\right)-\left(b+c\right)\left(a^2-b^2\right)+\left(c+a\right)\left(c^2-a^2\right)\)
\(=\left(a^2-b^2\right)\left(a+b-b-c\right)+\left(c^2-a^2\right)\left(c+a-b-c\right)\)
\(=\left(a-b\right)\left(a+b\right)\left(a-c\right)+\left(c-a\right)\left(c+a\right)\left(a-b\right)\)
\(=\left(a-b\right)\left(a-c\right)\left(a+b-c-a\right)\)
\(=\left(a-b\right)\left(a-c\right)\left(b-c\right)\)
Chúc bạn học tốt.