Tìm x,y nguyên thoả mãn x^2 +x+6=y^2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) Giả sử: \(9x+5=n\left(n+1\right)\left(n\in Z\right)\)
\(36x+20-4n^2+4n\)
\(\Rightarrow36x+21=4n^2+4n+1\)
\(\Rightarrow3\left(12x+7\right)=\left(2n+1\right)^2\)
\(\left(2n+1\right)^2\)là số chính phương nên sẽ chia hết cho 3 => (2n+1)2 chia hết cho 9
Lại có: 12x+7 ko chia hết cho 3 => 3(12x+7) ko chia hết cho 9
Chứng tỏ không tồn tại số nguyên x nào để 9x+5=n(n+1)
a/ Ta có VP là số lẻ nên VT cũng phải là số lẻ. Hay trong 2 số x, y phải có 1 số lẻ.
Giả sử số lẻ đó là x thì ta có
\(\hept{\begin{cases}x=2m+1\\y=2n\end{cases}}\)
\(\Rightarrow\left(2m+1\right)^2+\left(2n\right)^2=1999\)
\(\Leftrightarrow4\left(m^2+m+n\right)=1998\)
Ta thấy VT chia hết chi 4 còn VP không chia hết cho 4 nên phương trình vô nghiệm
b/ \(9x^2+2=y^2+y\)
\(\Leftrightarrow36x^2+8=4y^2+4y\)
\(\Leftrightarrow\left(2y+1\right)^2-36x^2=9\)
\(\Leftrightarrow\left(2y+1-6x\right)\left(2y+1+6x\right)=9\)
y.(x-2)+3x-6=2
=>y.(x-2)+3x-3.2=2
=>y.(x-2)+3.(x-2)=2
=>(y+3).(x-2)=2
Ta thấy: 2=1.2=(-1).(-2)
Vì x,y thuộc Z=>y+3,x-2 thuộc Z
Ta có bảng sau:
x-2 | 1 | 2 | -1 | -2 |
x | 3 | 4 | 1 | 0 |
y+3 | 2 | 1 | -2 | -1 |
y | -1 | -2 | -5 | -4 |
Vậy (x,y)=(3,-1),(4,-2),(1,-5),(0,-4)
=>xy^2(xy-x^2-5)=-27
x,y là số nguyên dương thì \(x,y^2\inƯ\left(-27\right)\)
=>\(x,y^2\in\left\{1;3;9;27\right\}\)
y^2=1 thì y=1
y^2=9 thì y=3
Khi y=1 thì x*(x-x^2-5)=-27
=>Loại
Khi y=3 thì 9x(3x-x^2-5)=-27
=>x=1
\(\Leftrightarrow x^3+y^3-x^2y-xy^2-6xy=0\)
\(\Leftrightarrow\left(x+y\right)^3-3xy\left(x+y\right)-xy\left(x+y+6\right)=0\)
Đặt \(\left\{{}\begin{matrix}x+y=a\\xy=b\end{matrix}\right.\) với \(a^2\ge4b\)
\(\Rightarrow a^3-3ab-b\left(a+6\right)=0\)
\(\Leftrightarrow a^3-2b\left(2a+3\right)=0\)
\(\Leftrightarrow8a^3+27-16b\left(2a+3\right)=27\)
\(\Leftrightarrow\left(2a+3\right)\left(4a^2-6a+9\right)-16b\left(2a+3\right)=27\)
\(\Leftrightarrow\left(2a+3\right)\left(4a^2-6a+9-16b\right)=27\)
Tới đây là pt ước số khá đơn giản, chắc em tự hoàn thành bài toán được.
Vô nghiệm
Có mà bạn