Tìm x,y nguyên thoả mãn
a) x^2 +6x+6=y^2
b) 3x^2 +5y^2=345
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) Giả sử: \(9x+5=n\left(n+1\right)\left(n\in Z\right)\)
\(36x+20-4n^2+4n\)
\(\Rightarrow36x+21=4n^2+4n+1\)
\(\Rightarrow3\left(12x+7\right)=\left(2n+1\right)^2\)
\(\left(2n+1\right)^2\)là số chính phương nên sẽ chia hết cho 3 => (2n+1)2 chia hết cho 9
Lại có: 12x+7 ko chia hết cho 3 => 3(12x+7) ko chia hết cho 9
Chứng tỏ không tồn tại số nguyên x nào để 9x+5=n(n+1)
b) 5x2 +5y2 +8xy + 2x-2y+2 = 0
(x2 +2x+1) + (y2 -2y+1) + (4x2 +8xy + 4y2) = 0
(x+1)2 + (y-1)2 +(2x+2y)2 = 0
=> (x+1)2 = 0 => x = -1
(y-1)2 = 0 => y = 1
(2x+2y)2 = 0
KL: x = -1; y = 1
a) 3x2 +5y2 = 345
=> x2 chia hết cho 5
=> x chia hết cho 5
đặt x = 5t=> 75t2+5y2 =345⇒15t2+y2 =69⇒y chia hết cho 3
đặt y = 3z => 15t2+9z2 =69
⇒5t2 +3z2 =23
...
x=-1;y=1
x=-1;y=-1
x=-5;y=-1
x=-5;y=1
a)(x+3)^2-3=y^2
(x+3-y)(x+3+y)=3
y=+-1
x={-5, -1}