so sánh: \(\frac{4^{15}}{7^{10}}\) và \(\frac{8^{10}.3^{30}}{7^{30}.4^{15}}\)
K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Những câu hỏi liên quan
Ta có : \(\frac{4^{15}}{7^{10}}=\frac{\left(2^2\right)^{15}}{7^{10}}=\frac{2^{30}}{7^{10}}\)
\(\frac{8^{10}.3^{30}}{7^{30}.1^{15}}=\frac{\left(2^3\right)^{10}.3^{30}}{7^{30}}=\frac{2^{30}.3^{30}}{7^{30}}=\frac{\left(2.3\right)^{30}}{7^{30}}=\frac{6^{30}}{7^{30}}\)
Mà : \(\frac{2^{30}}{7^{10}}=\frac{\left(2^3\right)^{10}}{7^{10}}=\frac{8^{10}}{7^{10}}\)
\(\frac{6^{30}}{7^{30}}=\frac{\left(6^3\right)^{10}}{\left(7^3\right)^{10}}=\frac{216^{10}}{343^{10}}\)
Vì : \(\frac{8}{7}>\frac{216}{343}\Rightarrow\frac{8^{10}}{7^{10}}>\frac{216^{10}}{343^{10}}\)
\(\Rightarrow\frac{4^{15}}{7^{10}}>\frac{8^{10}.3^{30}}{7^{30}.4^{15}}\)
giúp mình vs
cho n là số tự nhiên
a, (n+ 10) (n+ 15) chia hết cho 2
b, n (n+ 1) (n+2) chia hết cho 2 và 3
c, n (n+ 1) (2n+1) chia hết cho 2 và 3